1 Python language exercises

1. (5 points) Consider the following expression, intended to print the square root of 16 :
$\operatorname{pow}(16,(1 / 2))$
What is the result of this expression? How should it be changed, still using pow, to yield the correct answer?
2. (5 points) Define the variables x and y as lists of numbers, and z as a tuple.
$x=[1,2,3,4,5]$
$\mathrm{y}=[11,12,13,14,15]$
$z=(21,22,23,24,25)$
(a) What is the value of $3 * x$?
(b) What is the value of $x+y$?
(c) What is the value of $x-y$?
(d) What is the value of $x[1]$?
(e) What is the value of $x[0]$?
(f) What is the value of $x[-1]$?
(g) What is the value of $x[:]$?
(h) What is the value of $x[2: 4]$?
(i) What is the value of $x[1: 4: 2]$?
(j) What is the value of $x[: 2]$?
(k) What is the value of $\mathrm{x}[:: 2]$?
(l) What is the result of the following two expressions?
$x[3]=8$
print x
(m) What is the result of the above pair of expressions if the list x were replaced with the tuple z ?
3. (5 points) Define the variable s as the string $s=" a b c d e "$.
(a) What is the value of $3 * x$?
(b) What is the value of $x[1]$?
(c) What is the value of $x[-1]$?
(d) What is the value of $x[:: 2]$?
4. (5 points) Write a program to find those numbers $\mathbf{i}=100$ that are equal to the sum of their factors.
5. (5 points) Define a "Big number" as a list of digits. Write a program whose first non-comment lines are two 20 -digit numbers
$\mathrm{x}=[3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,5]$
$y=[2,7,1,8,2,8,1,8,2,8,4,5,9,0,4,5,5,3,4,9]$
Write a program that:
(a) Finds the sum ($\mathrm{x}+\mathrm{y}$) considered as 20-digit "big numbers" and prints it as a list of digits.
(b) Finds the product $15^{*} \mathrm{x}$ considered as a product of "big numbers" and prints it as a list of digits.

Your program should be general enough that if x and y are changed to be 30-digit numbers, your program would still work correctly.
6. (8 points) Write a program to do the following tasks:
(a) Define a function named dif2 that accepts an integer N as input parameter and constructs and returns an $N \times N$ two-dimensional numpy array A, with the value -2.0 on the main diagonal and the value +1.0 on the super-diagonal and the sub-diagonal.
(b) For $\mathrm{N}=10$, construct a one-dimensional array b of length N filled with zeros except that the first element is 1.0 and the last element is -N . For $\mathrm{N}=10$, solve the system $A x=b$ for x.
(c) For $\mathrm{N}=20$, construct a one-dimensional array c of length N, filled with random numbers. For A from the dif2 function, Solve the system $A y=c$ for y and then confirm that the solution you found is approximately correct by computing the relative norm of the residual error, $\|A y-c\| /\|c\|$. This value should be no larger than 10^{-12}.

