
Lab 2: Explicit ODE methods
MATH2071, University of Pittsburgh, Spring 2023

1 Introduction

In this lab we consider solution methods for ordinary differential equations (ODEs). We will be looking at
two classes of methods that excel when the equations are smooth and derivatives are not too large. This lab
will take two class sessions.

The lab begins with an introduction to Euler’s (explicit) method for ODEs. Euler’s method is the simplest
approach to computing a numerical solution of an initial value problem. However, it has about the lowest
possible accuracy. If we wish to compute very accurate solutions, or solutions that are accurate over a long
interval, then Euler’s method requires a large number of small steps. Since most of our problems seem to be
computed “instantly,” you may not realize what a problem this can become when solving a “real” differential
equation.

Applications of ODEs are divided between ones with space as the independent variable and ones with
time as the independent variable. We will use x as independent variable consistently. Sometimes it will be
interpreted as a space variable (x-axis) and sometimes as time.

A number of methods have been developed in the effort to get solutions that are more accurate, less
expensive, or more resistant to instabilities in the problem data. Typically, these methods belong to “families”
of increasing order of accuracy, with Euler’s method (or some relative) often being the member of the lowest
order.

In this lab, we will look at “explicit” methods, that is, methods defined by an explicit formula for yk+1,
the approximate solution at the next time step, in terms of quantities derivable from previous time step data.
In a later lab, we will address “implicit” methods that require the solution of an equation in order to find
yk+1. We will consider the Runge-Kutta and the Adams-Bashforth families of methods. We will talk about
some of the problems of implementing the higher order versions of these methods. We will try to compare
the accuracy of different methods applied to the same problem, and using the same number of steps.

Runge-Kutta methods are “single-step” methods while Adams-Bashforth methods are “multistep” meth-
ods. Multistep methods require information from several preceding steps in order to find yk+1 and are a
little more difficult to use. Nonetheless, both single and multistep methods have been very successful and
there are very reliable routines available to solve ODEs using both types of methods.

2 Euler’s method

A very simple ordinary differential equation (ODE) is the explicit scalar first-order initial value problem:

dy

dx
= fode(x, y)

y(x0) = y0.

The equation is explicit because dy/dx can be written explicitly as a function of x and y. It is scalar because
we assume that y(x) is a scalar quantity, not a vector. It is first-order because the highest derivative that
appears is the first derivative dy/dx. It is an initial value problem (IVP) because we are given the value of
the solution at some time or location x0 and are asked to produce a formula for the solution at later times.

An analytic solution of an ODE is a formula y(x), that we can evaluate, differentiate, or analyze in any
way we want. Analytic solutions can only be determined for a small class of ODE’s. The term “analytic”
used here is not quite the same as an analytic function in complex analysis.

A “numerical solution” of an ODE is simply a list of abscissas x and values y arranged in table (xk, yk)
that approximate the value of an analytic solution y(x). A numerical solution is only an approximation at a
discrete set of points; there is generally some difference between the tabulated values and the true solution.
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The important question is, how large is this difference, and how does it grow as we proceed? One way to
pose this question is to determine how close the computed values (xk, yk) are to the analytic solution, which
we might write as (xk, y(xk)).

The simplest method for producing a numerical solution of an ODE is known as Euler’s explicit method,
or the forward Euler method. Given a solution value (xk, yk), we estimate the next row of the approximate
solution table by:

xk+1 = xk + h

yk+1 = yk + h y′(xk, yk).

(The step size is denoted h here. Sometimes it is denoted dx.) We can take as many steps as we want with
this method, using the result from one step as the starting point for the next step.

A procedure to solve an ODE will need to accept as an argument the name of a function which evaluates
y′. That function can have any name, but the procedure gives it a “dummy name”, which we will usually
take to be “f ode(x,y)”. Inside of the procedure, we can evaluate the function as though that was its actual
name.

An ODE solving procedure might have a signature like this:

def od e s o l v e r ( f ode , xRange , y I n i t i a l , numSteps ) :
. . .

return x , y

Supposing your right hand side function is evaluated by my ode(x,y), then you call ode solver() using a
command such as

f od e = my ode
xRange = np . array ( [ 0 . 0 , 1 . 0 ] )
y I n i t i a l = 0 .0
numSteps = 10
x , y = ode s o l v e r ( f ode , xRange , y I n i t i a l , numSteps )

or perhaps simply

x , y = ode s o l v e r ( my ode , np . array ( [ 0 . 0 , 1 . 0 ] ) , 0 . 0 , 10 )

3 forward euler()

Our first example of an ODE solver implements Euler’s method, and is called forward euler(). It is written
in such a way that it will be able to handle systems of ODE’s as well as a single ODE. Download the file
forward euler.py or make a copy from the text here using cut-and-paste:

def f o rwa rd eu l e r ( f ode , xRange , y I n i t i a l , numSteps ) :
”””
x , y = forward eu l e r ( f ode , xRange , y I n i t i a l , numSteps )

Use Euler ’ s e x p l i c i t method on one or more ODEs dy/dx=f ode ( x , y ) .

Input :
f ode e va l ua t e s the r i g h t hand s i d e .
xRange = [ x1 , x2 ] , the s o l u t i on i n t e r v a l .
y I n i t i a l = k i n i t i a l va lue s f o r y at x1
numSteps = number o f equa l l y−s i z e d s t e p s to take from x1 to x2

Output :
x = numSteps+1 x va lue s .
y = numSteps+1 rows and k columns , with k−th row conta in ing s o l u t i on at x [ k ]

”””
import numpy as np
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x = np . z e r o s ( numSteps + 1 )
y = np . z e r o s ( ( numSteps + 1 , np . s i z e ( y I n i t i a l ) ) )

dx = ( xRange [ 1 ] − xRange [ 0 ] ) / numSteps

for k in range ( 0 , numSteps + 1 ) :

i f ( k == 0 ) :
x [ 0 ] = xRange [ 0 ]
y [ 0 , : ] = y I n i t i a l

else :
x [ k ] = x [ k−1] + dx
y [ k , : ] = y [ k−1 , : ] + dx ∗ f od e ( x [ k−1] , y [ k−1 , : ] )

return x , y

4 expm ode, a sample ODE problem

Here is a sample ODE to be solved:

dy

dx
= −y − 3x (1)

y(0) = 1

The exact solution is y = −2e−x − 3x+ 3.
Create a file expm ode.py defining the right hand side of this problem:

def expm ode ( x , y ) :
”””
expm ode ( x , y ) e va l ua t e s the ODE r i g h t hand s i d e dy/dx=−y+3∗x

Input :
x i s the independent v a r i a b l e
y i s the dependent v a r i a b l e

Output :
fValue i s the va lue o f dy/dx

”””
fValue = − y − 3 .0 ∗ x

return fValue

5 Exercise 1

1. Create a file exercise1.py for this exercise.

2. Use forward euler() to solve the sample problem,

f od e = expm ode
xRange = np . array ( [ 0 . 0 , 2 . 0 ] )
y I n i t = 1 .0
numSteps = ?
x , y = fo rwa rd eu l e r ( f ode , xRange , y In i t , numSteps )

for each of the 6 values of numSteps in the table below.

3. For k from 0 to 5, using numSteps[k], compute the error e[k] as the difference between your approx-
imate solution and the exact solution at the final point x=2.0.

4. for k from 0 to 4, compute and print the error ratios r[k] = e[k] / e[k+1].
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Euler’s explicit method

Value Error Error ratio

k numSteps Stepsize Y[-1,0] E[k] E[k]/E[k+1]

0 10 0.2 -3.21474836 5.5922e-02 _________

1 20 0.1 __________ __________ _________

2 40 0.05 __________ __________ _________

3 80 0.025 __________ __________ _________

4 160 0.0125 __________ __________ _________

% 320 0.00625 __________ __________

5. You know the error is O(hp) for some p. There is a simple way to estimate the value of p by successively
halving h. If the error were exactly Chp, then by solving twice, once using h and the second time using
h/2 and taking the ratio of the errors, you would get

error(h)

error(h/2)
=

Chp

C(h/2)p
= 2p.

Since the error is only O(hp), the ratio is only approximately 2p.
Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp, where h is the step size. p is an integer in this case.

6 The Euler Halfstep (RK2) Method

The “Euler halfstep” or “RK2” method is a variation of Euler’s method. It is the second-simplest of a family
of methods called “Runge-Kutta” methods. As part of each step of the method, an auxiliary solution, one
that we don’t really care about, is computed halfway, using Euler’s method:

xa = xk + h/2

ya = yk + 0.5hfode(xk, yk) (2)

The derivative function is evaluated at this point, and used to take a full step from the original point:

xk+1 = xk + h;

yk+1 = yk + hfode(xa, ya) (3)

Although this method uses Euler’s method, it ends up having a higher order of convergence. Loosely
speaking, the initial half-step provides additional information: an estimate of the derivative in the middle of
the next step. This estimate is presumably a better estimate of the overall derivative than the value at the
left end point. The per-step error is O(h3) and, since there are O(1/h) steps to reach the end of the range,
O(h2) overall. Keep in mind that we do not regard the auxiliary points as being part of the solution. We
throw them away, and make no claim about their accuracy. It is only the whole-step points that we want.

7 rk2()

Write a file named rk2.m that implements the Euler halfstep (RK2) method sketched above in Equations
(??) and (??). Keep the same calling parameters and results as for forward euler.m above. Keeping these
the same will make it easy to compare different methods. The following model for the file is based on the
forward euler.m file with the addition of the variables xa and ya representing the auxiliary variables xa
and ya in Equation (??). Add comments to this outline, including explanations of all the variables in the
signature line, and fill in expressions where ??? have been left.
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def rk2 ( f ode , xRange , y I n i t i a l , numSteps ) :
”””
x , y = rk2 ( f ode , xRange , y I n i t i a l , numSteps )
”””
import numpy as np

x = np . z e r o s ( numSteps + 1 )
y = np . z e r o s ( ( numSteps + 1 , np . s i z e ( y I n i t i a l ) ) )

dx = ( xRange [ 1 ] − xRange [ 0 ] ) / numSteps

for k in range ( 0 , numSteps + 1 ) :

i f ( k == 0 ) :
x [ 0 ] = xRange [ 0 ]
y [ 0 , : ] = y I n i t i a l

else :
xa = ???
ya = ???
x [ k ] = x [ k−1] + dx
y [ k , : ] = y [ k−1 , : ] + dx ∗ f od e ( ??? )

return x , y

Notice that the output quantity y is treated like a “matrix”. This allows us to use the same ODE solver
for scalar problems and vector problems of any size. However, this means that if we are actually solving a
scalar problem, we still have to think of the result y as a matrix, not a vector; if the last entry in y is the
solution value at the end point, we have to access this value using the expression y[-1,0], where “-1” means
last row and “0” means first (and in this case, only) item in the row. If we were to write y[-1], we wouldn’t
get a number, we’d get a numpy() array containing that number, which is not what you want!

8 Exercise 2

1. Write a file exercise2.py for this exercise.

2. Use rk2() to compute the numerical solution of the model ODE for the exponential, expm ode.m,
from Exercise 1, from x = 0.0 to x = 2.0, and with the same initial value as in Exercise 1, but using
Euler’s halfstep method, RK2, with stepsizes below.

3. For each case, record the value of the numerical solution at x = 2.0; the error, that is, the difference
between the numerical solution and the true solution at the end point x=2 (y=-2*exp(-2)-3); and, the
ratios of the error for each value of numSteps divided by the error for the succeeding value of numSteps.

Using RK2 Solver:

Value Error Error Ratio

k numSteps Stepsize Y[-1,0] E[K] E[K]/E[K+1]

0 10 0.2 -3.274896063 4.2255e-3 __________

1 20 0.1 __________ __________ __________

2 40 0.05 __________ __________ __________

3 80 0.025 __________ __________ __________

4 160 0.0125 __________ __________ __________

5 320 0.00625 __________ __________

4. Based on the ratios in the table, estimate the order of accuracy of the method, that is, estimate the
exponent p in the error estimate Chp. p is an integer in this case.
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5. Compare errors from Euler’s method (Exercise 1) and Euler’s halfstep method for this problem. You
should clearly see that Euler’s halfstep method (RK2) converges much faster than Euler’s method.

Euler RK2

k numSteps Stepsize Error E[K] Error E[k]

0 10 0.2 __________ __________

1 20 0.1 __________ __________

2 40 0.05 __________ __________

3 80 0.025 __________ __________

4 160 0.0125 __________ __________

5 320 0.00625 __________ __________

6. Based on the above table, roughly how many steps does Euler require to achieve the accuracy that
RK2 has for numSteps=10?

7. You have already found the the error for Euler’s method is approximately CEh
pE and the error for

RK2 is approximately CRK2h
pRK2 . Based on one or both of these estimates, roughly how many steps

would Euler require to achieve the accuracy that RK2 has for numSteps=320? Explain your reasoning.

8. Check that the accuracy obtained using Euler’s method with your estimated number of steps is com-
parable to the accuracy that RK2 has for numSteps=320.

9 Runge-Kutta Methods

The idea in Euler’s halfstep method is to “sample the water” between where we are and where we are going.
This gives us a much better idea of what f is doing, and where our new value of y ought to be. Euler’s
method (“RK1”) and Euler’s halfstep method (“RK2”) are the junior members of a family of ODE solving
methods known as “Runge-Kutta” methods.

To develop a higher order Runge-Kutta method, we sample the derivative function f at even more
“auxiliary points” between our last computed solution and the next one. These points are not considered
part of the solution curve; they are just a computational aid. The formulas tend to get complicated, but let
me describe the next one, at least.

The third order Runge Kutta method “RK3,” given x, y and a stepsize h, computes two intermediate
points:

xa = xk + .5h

ya = yk + .5hfode(xk, yk) (4)

xb = xk + h

yb = yk + h(2fode(xa, ya) − fode(xk, yk))

and then estimates the solution as:

xk+1 = xk + h

yk+1 = yk + h(fode(xk, yk) + 4.0fode(xa, ya) + fode(xb, yb))/6.0 (5)

The global accuracy of this method is O(h3), and so we say it has “order” 3. Higher order Runge-Kutta
methods have been computed, with those of order 4 and 5 the most popular.

10 rk3()

Write a file called rk3.m with the signature
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function [ x, y ] = rk3 ( f_ode, xRange, yInitial, numSteps )

% comments including the signature, meanings of variables,

% math methods, your name and the date

that implements the above algorithm. You can use rk2.m as a model.

11 Exercise 3

1. Write a file exercise3.py for this exercise.

2. Using rk3(), repeat the numerical experiment in Exercise 2 (using expm ode) and fill in the following
table. Use the first line of the table to confirm that you have written the code correctly.

RK3 RK3

numSteps Stepsize Y[-1,0] Error E[K] Ratio=E[K]/E[K+1]

10 0.2 -3.27045877 2.1179e-04 __________

20 0.1 __________ __________ __________

40 0.05 __________ __________ __________

80 0.025 __________ __________ __________

160 0.0125 __________ __________ __________

320 0.00625 __________ __________

3. Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp. p is an integer in this case.

4. Compare errors from the RK2 method (Exercise 2) and the RK3 method for this problem. You should
clearly see that RK3 converges much faster than RK2.

RK2 RK3

numSteps Stepsize Error E[K] Error E[K]

10 0.2 __________ __________

20 0.1 __________ __________

40 0.05 __________ __________

80 0.025 __________ __________

160 0.0125 __________ __________

320 0.00625 __________ __________

5. Based on the above table, roughly how many steps does RK2 require to achieve the accuracy that RK3
has for numSteps=10?

6. You have already found the the error for RK2 is approximately CRK2h
pRK2 and the error for RK3 is

approximately CRK3h
pRK3 . Based on one or both of these estimates, roughly how many steps would

RK2 require to achieve the accuracy that RK3 has for numSteps=320? Explain your reasoning.

7. Check that the accuracy obtained using RK2 with your estimated number of steps is comparable to
the accuracy that RK3 has for numSteps=320.

12 Exercise 4

You have not tested your code for systems of equations yet. In this exercise you will do so by solving the
“system”

dy0
dx

= −y0 − 3x

dy1
dx

= −y1 − 3x. (6)
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You can see that this “system” is really (??) twice, so you can check y0 and y1 against each other and against
your earlier work.

1. Write a file exercise3.py for this exercise.

2. The file expm ode.m will automatically return a vector result if it is given a vector for y. To see this
fact in action, try the following command:

x = 1.0

y = np.array ( [ 5, 6 ] )

fValue = expm_ode ( x, y )

print ( fValue )

Please include the value of fValue in your summary file.

3. Solve the system (??) using rk3 and expm ode on the interval [0,2] starting from the initial value vector
[5,6], with numSteps=40. Save the results as xs, ys. The result at the final time xs[-1] is stored in
ys[-1,:]. Print out this value.
(Recall that, in Python, asking for the -1 index of an array asks for the last item in that dimension.
Using an index array of : asks for all the items in that dimension. We are interested in the last row
of ys, and all the entries in that row.)

4. Solving the system (??) amounts to solving (??) twice, once with initial value y(0)=5, and once more
with initial value y(0)=6. To verify this, repeat the calculation by solving the scalar IVP (??), once
with initial value y=5 and once with initial value y=6. Save these solutions as x0, y0 and x1, y1.
Compare y0[-1] and ys[-1,0]. Compare y1[-1] and ys[-1,1]. These values should match.

5. Instead of comparing the last entries of the two calculations, you can get a measure of the difference
of all the entries, using the norm() function:

import numpy as np
np . l i n a l g . norm ( ys [ : , 0 ] − y0 [ : , 0 ] )
np . l i n a l g . norm ( ys [ : , 1 ] − y1 [ : , 0 ] )

Note that, even though y0 and y1 are “really” vectors, the ODE solver returns each of them as a
“matrix”, that is, an object that must be accessed by two indices. So, for instance, instead of writing
y0[:] to represent the list of solution values of the first scalar ODE, we have to write y0[:,0].

13 pendulum ode()

The equation describing the motion of a pendulum can be described by the single dependent variable θ
representing the angle the pendulum makes with the vertical. The coefficients of the equation depend on the
length of the pendulum, the mass of the bob, and the gravitational constant. Assuming a coefficient value
of 3, the equation is

d2θ

dx2
+ 3 sin θ = 0

and one possible set of initial conditions is

θ(x0) = 1

dθ

dx
(x0) = 0

This second order equation can be written as a system

dy

dx
=

(
y2

−3 sin y1

)
y(0) =

(
1
0

)
.
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(Recall that this transformation is accomplished by the change of variables y0 = θ and y1 = dθ/dx.)

Write a file named pendulum ode.py with signature

def pendulum ode ( x , y ) :
”””
fValue = pendulum ode (x , y )
comments inc l ud ing meanings o f v a r i a b l e s ,
math methods , your name and the date
”””

. . .
return fValue

14 Exercise 5

1. Write a file exercise5.py for this exercise.

2. Generate a solution (x1,y1) using Euler with 1,000 steps.

3. Generate a solution (x2,y2) using Euler with 10,000 steps.

4. Generate a solution (x3,y3) using RK3 with 100 steps.

5. Make three plots of the theta portion of each of your solutions, using commands like:

import matp lo t l i b . pyplot as p l t
theta1 = y1 [ : , 0 ]
p l t . p l o t ( x1 , theta1 )

6. Conservation of energy guarantees that physically, the value of θ should stay between -1 and 1. What
do your plots suggest about the accuracy of your results?

15 Stability

Explicit methods for solving ODE’s are generally “conditionally stable”. In order for the computed solution
to approximate the true solution well, the stepsize h must be small enough (or equivalent, the value of
numSteps must be large enough.)

In the following exercise, we will start with a large value of numsteps and decrease it repeatedly. As
the stepsize h grows, not only do the results become less accurate, but the solution will become unstable,
resulting in a crazy see-saw plot.

16 Exercise 6

1. Write a file exercise6.py for this exercise.

2. Use forward euler to solve the ODE using expm ode, over the interval [0,20], starting from y=20

and using numSteps=40, 30, 20, 15, 12, 10. As you compute each solution, add it to a single
plot. Once all your solutions have been plotted, you could add a legend() command to identify the
individual curves:

p l t . l egend ( [ ’n=40 ’ , ’n=30 ’ , ’ n=20 ’ , ’n=15 ’ , ’ n=12 ’ , ’n=10 ’ ] )

3. Use RK3 to solve the ODE using expm ode, over the interval [0,20], starting from y=20 and using
numSteps=40, 30, 20, 15, 12, 10, 8. Note that this list has one more value than we used for the
Euler example. As you compute each solution, add it to a single plot.

In both your Euler and RK3 plots, you should see that, as the stepsize becomes too large, the approximate
solution starts jumping up and down. This is a sign that the ODE procedure has become unstable, and that
the stepsize is too large to get accurate results.
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17 Adams-Bashforth Methods

Like Runge-Kutta methods, Adams-Bashforth methods want to estimate the behavior of the solution curve,
but instead of evaluating the derivative function at new points close to the next solution value, they look
at the derivative at old solution values and use interpolation ideas, along with the current solution and
derivative, to estimate the new solution. This way they don’t compute solutions at auxiliary points and then
throw the auxiliary values away. The savings can result in increased efficiency.

Looked at in this way, the forward Euler method is the first order Adams-Bashforth method, using no
old points at all, just the current solution and derivative. The second order method, which we’ll call “AB2,”
adds the derivative at the previous point into the interpolation mix. We might write the formula this way:

yk+1 = yk + h(3fode(xk, yk) − fode(xk−1, yk−1))/2

The AB2 method requires derivative values at two previous points, but we only have one when starting
out. If we simply used an Euler step, we would pick up a relatively large error on the first step, which would
pollute all subsequent results. In order to get a reasonable starting value, we should use the RK2 method,
whose per-step error is order O(h3), the same as the AB2 method.

18 ab2()

The code ab2() implements the Adams-Bashforth second-order method. Download the file ab2.py, or else
try using cut-and-paste on the text, so that you can use this function in the next exercise.

def ab2 ( f ode , xRange , y I n i t i a l , numSteps ) :
”””
[ x , y ] = ab2 ( f ode , xRange , y I n i t i a l , numSteps )

uses Adams−Bashforth second−order method to s o l v e a system
of f i r s t −order ODEs dy/dx=f ode ( x , y ) .

Input :
f ode = eva l ua t e s r i g h t hand s i d e .
xRange = [ x1 , x2 ] where the s o l u t i on i s sought on x1<=x<=x2
y I n i t i a l = column vec tor o f i n i t i a l va lue s f o r y at x1
numSteps = number o f equa l l y−s i z e d s t e p s to take from x1 to x2

Output :
x = vec tor o f va lue s o f x
y = matrix whose k−th row i s the approximate s o l u t i on at x ( k ) .

”””
import numpy as np

x = np . z e r o s ( numSteps + 1 )
y = np . z e r o s ( ( numSteps + 1 , np . s i z e ( y I n i t i a l ) ) )

dx = ( xRange [ 1 ] − xRange [ 0 ] ) / numSteps

for k in range ( 0 , numSteps + 1 ) :
i f ( k == 0 ) :

x [ k ] = xRange [ 0 ]
y [ k , : ] = y I n i t i a l

e l i f ( k == 1 ) :
fValue = f ode ( x [ k−1] , y [ k−1 , : ] )
xha l f = x [ k−1] + 0 .5 ∗ dx
yha l f = y [ k−1 , : ] + 0 .5 ∗ dx ∗ fValue
fVa lueha l f = f ode ( xha l f , yha l f )
x [ k ] = x [ k−1] + dx
y [ k , : ] = y [ k−1 , : ] + dx ∗ fVa lu eha l f

else :
fVa lueo ld = fValue
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fValue = f ode ( x [ k−1] , y [ k−1 , : ] )
x [ k ] = x [ k−1] + dx
y [ k , : ] = y [ k−1 , : ] + dx ∗ ( 3 . 0 ∗ fValue − fVa lueo ld ) / 2 .0

return x , y

• The temporary variables fValue and fValueold have been introduced here but were not needed in
the Euler, RK2 or RK3 methods. Explain, in a few sentences, their role in AB2.

• If numSteps is 100, then exactly how many times will we call the derivative function f ode?

19 Exercise 7

1. Create a file exercise7.py for this exercise.

2. Use ab2() to compute the numerical solution of the ODE for the exponential (expm ode) from x = 0.0

to x = 2.0, starting at y=1 with numSteps = 10, 20, 40, 80, 160, 320. Recall that the exact solution
at x=2, is y=-2*exp(-2)-3. For each case, record the value of the numerical solution at x = 2.0, and
the error

AB2 errors on expm_ode

k numSteps y[-1,0] Error E[k]

0 10 -3.28013993 9.4694e-03

1 20 __________ __________

2 40 __________ __________

3 80 __________ __________

4 160 _________ __________

5 320 _________ __________

3. Make a second table reporting the error ratios:

AB2 error ratios on expm_ode

k numSteps Ratio E[k]/E[k+1]

0 10 __________

1 20 __________

2 40 __________

3 80 __________

4 160 __________

4. Based on the ratios in the table, estimate the order of accuracy of AB2, that is, the exponent p in the
error estimate Chp.
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