
Midpoint and ODE45
Two more ODE Solvers

MATH1902: Numerical Solution of Differential Equations
http://people.sc.fsu.edu/∼jburkardt/classes/math1902 2020/midpoint/midpoint.pdf

The midpoint method approximates the slope in the middle.

More ODE Solvers

Our current choices for ODE solvers include the fixed stepsize versions of the Euler method, Runge
Kutta solvers rk1, rk2, rk4, the implicit Euler method, and some simple adaptive stepsize solvers based
on rk1 and rk2. We introduce the midpoint method, a more powerful alternative to the backward Euler
method, and ode45(), an ODE solver provided with MATLAB, which has high accuracy, powerful error
estimation and stepsize adaptation.

1 The Midpoint Method “improves” Backward Euler

We introduced the backward Euler method as a technique that could handle stiff differential equations. The
special characteristic of the method is that it is implicit, so that each step requires setting up and solving
an implicit equation. This extra work was easy to set up using MATLAB’s fsolve() function.

Thus the backward Euler method was able to get a good approximation to the solution to our stiff ODE
example, while the usual Euler method produced a ridiculously zigzagging result. However, both these meth-
ods are only first order - that is, the error decreases like dt. We also saw, in the discussion on conservation,
that for some ODE’s, it may be important to use a solver that can conserve a quantity such as energy or
mass. The backward Euler method can only do this for a conservation quantity that is a linear function of
the variables, whereas many physical systems have a conservation law that is a quadratic function.

1

The midpoint method is an enhanced version of the backward Euler method. It also involves solving an
implicit equation, but it has second order accuracy (the error now descreases like dt2, and it can capture
quadratic conservation laws. We have already seen the midpoint method in action in the previous class, but
now we will explain how it is defined, and try some more examples.

Mathematically, the midpoint method for solving y′(t) = f(t, y) using a fixed stepsize dt produces a sequence
of approximate values, whose i + 1-th member should satisfy the following equation:

yi+1 = yi + dt ∗ y′(ti, yi) + y′(ti+1, yi+1)

2

To see where this came from, rewrite it as

dy

dt
≈ yi+1 − yi

dt
=

y′(ti, yi) + y′(ti+1, yi+1)

2

We can interpret this as the statement that y′(ti+1/2) should be well approximated by the average of the
derivatives at ti and ti+1. In fact, this approximation is of one higher degree of accuracy than we had for
the forward or backward Euler methods.

To figure out the value of yi+1, we have to solve this implicit equation, so in general we will need to use
something like MATLAB’s fsolve() to crack the implicit equation that results. However, if the ODE is linear,
then we can actually work out the solution for this special case. Let’s start by looking at such a simpler
example.

2 stiff midpoint explicit(): The Midpoint Method for a Linear ODE

Our stiff ODE example has the form:
y′ = 50(cos(t) − y)

with initial condition:
y(0) = 0

Suppose we wish to apply the midpoint method to this problem, using a stepsize dt. Then we have

yi+1 = yi + dt ∗ y′(ti, yi) + y′(ti+1, yi+1)

2

yi+1 = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ (cos(ti+1) − yi+1)

2

yi+1 +
dt

2
(50 ∗ yi+1) = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ cos(ti+1)

2

(1.0 + 25 ∗ dt) ∗ yi+1 = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ cos(ti+1)

2

yi+1 =
yi + 25 ∗ dt ∗ (cos(ti) − yi + cos(ti+1))

1.0 + 25 ∗ dt

It’s actually tricky to write this update formula correctly in MATLAB, getting all the parentheses in the
right place. So I will write out the solver routine in full, and show the update formula spread out over several
lines, so that I can force the open and close parentheses to line up clearly.

1 function [t , y] = m idpo i n t e xp l i c i t (n)
2
3 t = zeros (n + 1 , 1) ;
4 y = zeros (n + 1 , 1) ;

2

5
6 t0 = 0 . 0 ;
7 t s top = 1 . 0 ;
8 dt = (t s top − t0) / n ;
9

10 t (1) = t0 ;
11 y (1) = 0 . 0 ;
12
13 for i = 1 : n
14 t (i +1) = t (i) + dt ;
15 y (i +1) = . . .
16 (. . .
17 y (i) + 25 .0 ∗ dt ∗ (. . .
18 cos (t (i)) − y (i) + cos (t (i +1)) . . .
19) . . .
20) . . .
21 / (1 . 0 + 25 .0 ∗ dt) ;
22 end
23
24 return
25 end

Listing 1: midpoint explicit.m solves the stiff problem.

This solver is actually part of the file stiff midpoint explicit.m, which uses it to to compute and plot a
solution. We can compare the result from backward Euler result to our new midpoint calculation:

Explicit backward euler and midpoint solutions with n = 25 steps.

We can guess from the plot that the midpoint method has better accuracy than the backward Euler method.
In fact, while the backward Euler method has accuracy O(dt), the midpoint method’s accuracy is O(dt2).
This means that, for a given stepsize, we are likely to get better results with the midpoint rule, and if we
cut the stepsize in half, the backward Euler error is divided by 2, but the midpoint error is divided by 4.
The midpoint method has some other features that make it very attractive for research computing, and so
we will be discussing it more in the future.

3 midpoint(): A general midpoint solver using fsolve()

Except when the right hand side is linear in the variable, most ODE’s don’t allow us to convert the midpoint
method into an explicit formula. So, just as we did for the backward Euler method, we are interested in
creating a MATLAB function that can apply the midpoint method to a general problem, while looking

3

“simple” to the user (same interface as for euler, rk2() and so on), while taking care of the hard work of
solving the implicit equation by calling the MATLAB function fsolve().

1 function [t , y] = midpoint (dydt , tspan , y0 , n)

Listing 2: Signature for the midpoint ODE solver.

The midpoint function will look similar to our other ODE solvers, except that when we need to approximate
the solution at the next time, we have to call a hidden function which solves the implicit midpoint equation:

1 function [t , y] = midpoint (f , tspan , y0 , n)
2
3 % Ask f s o l v e () not to p r in t messages .
4
5 opt ions = opt imopt ions (’ f s o l v e ’ , ’ Display ’ , ’ o f f ’) ;
6
7 m = length (y0) ;
8 t = zeros (n + 1 , 1) ;
9 y = zeros (n + 1 , m) ;

10
11 dt = (tspan (2) − tspan (1)) / n ;
12
13 t (1 , 1) = tspan (1) ;
14 y (1 , :) = y0 (:) ;
15
16 for i = 1 : n
17
18 to = t (i , 1) ;
19 yo = y(i , :) ;
20
21 tp = to + dt ;
22 yp = yo + dt ∗ f (to , yo) ’ ; % I n i t i a l guess i s forward Euler es t imate .
23
24 yp = f s o l v e (@(yp) midpo in t r e s i dua l (f , to , yo , tp , yp) , yp , opt ions) ;
25
26 t (i +1 ,1) = tp ;
27 y (i +1 , :) = yp ;
28
29 end
30
31 return
32 end

Listing 3: Text of midpoint.m

Meanwhile midpoint residual() defines a function whose value would is zero if yp is the correct midpoint
prediction. It is simply this:

1 function value = backward eu l e r r e s i dua l (f , to , yo , tp , yp)
2 value = yp − yo − (tp − to) ∗ (f (t0 , y0) + f (tp , yp)) ’ / 2 . 0 ;
3 return
4 end

Listing 4: Code to evaluate the midpoint residual.

You don’t need to understand why we have to write things this way, but you should be able to see that if
fsolve() finds a value yp for which midpoint residual() returns a value of 0, then we have found our desired
result.

4

4 stiff midpoint() repeats our computation

Let’s use our general midpoint method to solve the stiff ODE again, and make sure that the explicit and
implicit results are identical for this problem.

The important thing to note is that, by using fsolve() to handle the implicit equation, we now have a midpoint
ODE solver that can be used in the exact same way as our familiar codes like euler() and rk2():

1 function s t i f f m i d p o i n t (n)
2
3 dydt = @ s t i f f d e r i v ;
4 t0 = 0 . 0 ;
5 t s top = 1 . 0 ;
6 tspan = [t0 , t s top] ;
7 y0 = 0 . 0 ;
8 %
9 % Same format as i f we were c a l l i n g eu l e r () or rk2 () or o ther o f our s o l v e r s . . .

10 %
11 [t1 , y1] = midpoint (dydt , tspan , y0 , n) ;
12
13 return
14 end

Explicit and implicit midpoint solutions with 25 steps.

5 quadex midpoint() handles the QUADEX ODE

The homework for the class on stiff ODE’s asked you to apply the backward Euler method to the QUADEX
ODE. This is a difficult problem, and we know that small errors can cause the calculation to go bad. Even
with 2,500 steps, the backward Euler method can’t hang onto the solution for the whole test range.

The midpoint method is also designed to handle stiff problems, but it has the extra advantage of greater
accuracy. Using only n = 200 steps over the same interval, we get a much more accurate picture of this
tricky problem.

5

QUADEX solution by backward Euler (2500 steps) and midpoint (200 steps).

6 The Degree of Accuracy

We have claimed that the midpoint method has degree 2, or order of accuracy 2, meaning that the global
error should behave like dt2. It is more clear to say that if we double n or equivalently, cut dt in half, the
error should go down by a factor of 1/4. The forward and backward Euler methods have degree 1, meaning
halving the stepsize only halves the error.

To get a feeling for what this looks like, and how to investigate the order of accuracy of any ODE solver, we
will consider the EXP ODE:

y′ = y; ODE

y(0) = 1; Initial condition

y(t) = et; Exact solution

We will solve this problem over the interval 0 ≤ t ≤ 5, and report the RMS error in our solution, using
n = 10, 20, 40, 80. You can see that the error goes down by roughly a factor of 2 for the Euler codes, but by
a factor of 4 for the midpoint rule:

Method n=10 n=20 n=40 n=80

--------------- ----- ----- ----- -----

euler() 33.15 20.21 11.44 5.14

backward_euler() 301.01 52.64 18.16 7.72

midpoint() 6.07 1.27 0.29 0.07

This chart is evidence that our accuracy claim is correct.

7 The Midpoint Method and Research Questions

The midpoint method for solving an ODE is of special interest to Professor Trenchea. Here are a few points
of interest.

• People disagree about what method should be called “the midpoint method”. Professor Trenchea very
firmly believes in the method we have used here. Textbooks and other researchers have used this same
name for methods that look similar, differ in small or large details;

6

• Because the midpoint method has a good conservation and accuracy properties, it is preferred by re-
searchers in areas such as chemistry, physics, magnetism, and even glacial modeling; Professor Trenchea
is trying to demonstrate its advantages to other scientists who are using inferior methods;

• Professor Trenchea is very interested in using an adaptive stepsize scheme (more powerful than the
ones we looked at) with the midpoint method. This becomes a difficult research problem when the
ODE switches rapidly between smooth and varying behavior. You can ask Professor Trenchea about
the van der Pol ODE, or look it up on Wikipedia!

An “easy” version of the van der Pol ODE.

8 ode45(): MATLAB’s ODE Solver

The user interface to ode45() is almost the same as I have been using for our example solvers like euler()
and rk2(). In particular, calling ode45() for a solution looks almost the same as we are used to:

1 [t , y] = ode45 (f , tspan , y0) ;

where f is the name of the user derivative function, tspan is a vector of length 2 containing the initial and
final times, and y0 is an ny-vector containing the values of the dependent variables at time t0.

Our previous ODE solvers included a final argument n, the number of steps to take. But ode45() does not
accept that value; this is because it uses an adapative stepsize algorithm, and so the number of steps to
be taken cannot be determined in advance. But by allowing the stepsize to vary, ode45() aims to produce
a solution that is as accurate as desired, as efficiently as possible. After the solution is returned, you can
determine the number of steps that were taken by a command like this:

1 n = length (t) − 1 ;

Here, we are subtracting 1 because we want n to count the number of steps, and so we don’t wish to include
the initial value as a step.

Another thing to keep in mind is how ode45() handles a problem involving a system of ny equations. First,
it is important that the derivative routine returns a column vector; ode45() will refuse to proceed if a row
vector is returned instead. Thus, for our pendulum ODE problem, the derivative function looks like this:

1 function dydt = pendulum deriv (t , y)
2
3 [g , l , m, t0 , y0] = pendulum parameters () ;
4
5 u = y (1) ;

7

6 v = y (2) ;
7
8 dudt = v ;
9 dvdt = − (g / l) ∗ u ;

10
11 dydt = [dudt ; dvdt] ; % <−− the semicolon makes dydt a COLUMN vec tor .
12
13 return
14 end

Secondly, note that the output of ode45() will be the nt + 1-vector t and the (nt + 1) × ny-array y. The
pendulum solution values at time i are y(i,1) and y(i,2), or in general y(i,1:ny). To plot the angular
deflection of the pendulum problem over time, we want to plot y(1:nt+1,1) or y(:,1).

Be sure you know the shape of your data! MATLAB can make a mess of things if you give it a row vector
when it wants a column vector; sometimes it prints an error message, and sometimes it thinks you are doing
a very fancy linear algebra computation and computes a result you didn’t want!

The ode45() code adapts the stepsize by estimating the error it has made in the most recent step. It does this
by comparing the predictions of Runge Kutta methods of degrees 4 and 5, which is where the “45” comes
from in the name. Note that, if you cut the stepsize in half, the error in a solver of degree 5 is divided by
32. This high accuracy means the solver usually does not have to take very small steps to get good results.

The ode45() code uses a sophisticated error measurement. After computing the difference of two solution
estimates to get an error estimate, it decides whether the error is small or large using a relative scale based
on the size of the solution. Our simple error estimation ideas would fail such a test.

Because ode45() uses high degree Runge Kutta solvers, it is expecting that the derivative function and
solution curve will be smooth, with at least 5 continuous and bounded derivatives. Some ODE’s do not
have such smooth solutions, and will cause the algorithm to be inefficient or to fail. MATLAB provides
alternatives that use lower degree solvers, such as ode23() for such cases.

Because ode45() uses explicit Runge Kutta solvers, it may perform poorly on stiff problems. When a problem
seems to be stiff, MATLAB provides several alternatives that can work better, including ode23s().

9 Homework #9

Set up the pendulum and predator-prey problems using ode45(), using the same data that we had for the
conservation class. For both problems, count n, the number of steps taken, compute and plot the conserved
quantities h(), and print the last value h(n+1). (For the pendulum problem, h() is computed by the function
pendulum energy().)
Fill in the chart to compare the ode45() results against midpoint(). What does this chart suggest about the
ode45() efficiency and conservation?

Problem initial midpoint midpoint ode45 ode45

h(1) h(n+1) n h(n+1) n

pendulum 5.37 5.37 400

predator 3.22 3.25 400

Submit your completed table via email to trenchea@pitt.edu

8

