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A follower who’s faster will cause a disaster!

The Burgers Equation

In advection, a velocity field carries along other items. The Burgers equation studies how the velocity
field transports velocity itself.

1 Momentum transport

When we looked at the advection equation, we assumed the velocity was constant, and that the flow carried
along some secondary quantity, such as a dye, heat energy, or pollutant. Especially if we used periodic
boundary conditions, it was easy to see that over time, the initial condition simply slid to the right (assuming
the velocity c was positive), wrapping around to return through the left endpoint.

It was surprisingly hard to come up with a solution strategy that could well approximate this simple behavior.
However, it was important to practice on this simple case, because there are more interesting problems to
study, for which we don’t know the exact solution. In particular, we might consider a velocity field that
varied with time or space.

However, another twist is to think about the fact that one of the quantities that the flow is transporting is
velocity itself. This is a little tricky to think about, but let us assume that u(x, t) represents both the velocity
and the quantity being transported. Then we have a generalization of the advection equation as follows:

∂u

∂t
= −u∂u

∂x
BNI: Burgers nonconservative inviscid equation

Note that we can rewrite this equation as

∂u

∂t
= −1

2

∂u2

∂x
BCI: Burgers conservative inviscid equation
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which is equivalent mathematically. However, we will see that the two equations are not equivalent compu-
tationally: each version of the equation suggests a different discretization, and the resulting approximations
have different properties.

Both of these equations are “inviscid”, which means that physically they do not try to model the way that
fluid motion tends to get smoothed out. We will see that leaving out this feature makes both forms of
the inviscid Burgers equation hard to handle, producing solutions that are very likely to break down in a
nonphysical way. It will be a relief when we add viscosity and try things a second time!

2 Upwind for BNI

To begin with, we can simply treat the Burgers nonconservative inviscid equation as an advection equation
where the velocity c is replaced by the unknown u. This means, for instance, that if we want to use the
upwind scheme, and we know that the velocity will always be positive, we can consider the formula:

u(i, j + 1) − u(i, j)

dt
= −u(i, j)

u(i, j) − u(i− 1, j)

dx
BNI upwind

To specify the full problem, we need to state the range of x and t, the initial condition, and the kind of
boundary conditions we want to use. We will find it convenient to use periodic boundary conditions, so that
our waves can exit on the right and return from the left. (This is assuming that the velocity u is always and
everywhere positive!).

So once again, a reasonable solution scheme is to treat the node at x(nx) as a “phantom” node whose u
value is always equal to that at x(1). So we need to solve for values at nodes I=1,2,...,nx-1, and set the
last value by copying the first.

For programming convenience, we will set the vectors IM1, I, IP1 to make it easy to index the correct
nodes for all our schemes. Instead of a single u array, we will have un() for the “new” velocity, and uo for
the “old” velocity, so that we have to remember to update uo at the beginning of each upwind step.

3 Exercise #1: Upwind solver for BNI

Create the MATLAB file exercise1.m by copying exercise3.m from the advection directory.

Reformulate the upwind scheme for the BNI equation by replacing c in the upwind scheme by the value
uo(I).

Here, I is the vector of indices 1, 2, ..., nx−1 that I set up in the advection exercises, along with IM1 and IP1.
By using these indices, we can skip using a for loop, and we can also take care of the periodic boundary
conditions automatically. Refer to one of the exercises that I posted, so that you can see how this idea makes
things simpler.

Instead of accepting an exact() function, make your code accept an initial() function. (Exact solutions
for the BNI equation are hard to come up with!) The initial() function is simpler than before, and should
have the form un=initial(x). On time step 1, call initial() instead of exact().

Since we don’t know the exact solution, remove the code that computes the error err, that computes the
exact solution vn, and that plots vn along with the computed solution un.

Your code should use nx = 81 for −1 ≤ x ≤ +1 and nt = 201 for 0 ≤ t ≤ 2. When your code is ready, try
running it with the command
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e x e r c i s e 1 ( @gaussian wave )

Listing 1: Upwind approximation for Gaussian wave.

You should expect to see a wave that starts out like a Gaussian curve, moves to the right, becoming steeper
in the front (the fast portion) and shallower in the back, where it is moving more slowly and stretching out.

The initial Gaussian wave, and the predicted shape after 200 time steps.

4 Monitoring velocity conservation

Physics includes a law of conservation of momentum, the product of mass and velocity. Mathematically,
solutions of the Burgers equation will also satisfy this law. Since our physical domain uses periodic boundary
conditions, and there are no source terms to add or subtract energy, the conservation law then simply says
that for any time tmin ≤ t ≤ tmax, we have∫ xmax

xmin

u(x, t) dx = Constant

Our discrete solution produces values at nx equally spaced points. Because of periodicity, we can approximate
the integral at time t(j) essentially by averaging the first nx-1 points:∫ xmax

xmin

u(x, t(j)) dx = Constant ≈
nx−1∑
i=1

un(i, j)∆x

but computationally, this is simply:

c ( j ) = sum ( un( I ) ) ∗ dx ;

where, as before, I=[1,2,...,nx-1].

5 Exercise #2: Plot velocity conservation using Upwind for BNI

Create exercise2.m by copying exercise1.m.

At the end of each iteration j of your time loop, evaluate the quantity c(j), the integral of your velocity
un().
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Once the time loop is finished, create a plot, which you might call exercise2 conservation.png, which plots
t versus c. In order to give a base line for comparison, you can also plot the value of c(1) as a constant
curve. You might do this with one plot command, like so:

plot ( t , c , ’b− ’ , [ t ( 1 ) , t ( nt ) ] , [ c (1 ) , c (1 ) ] , ’ r−− ’ ) ;

Run your program using the same parameters as used by exercise1. What does your conservation plot
suggest to you about the upwind method?

6 Exercise #3: Lax-Friedrichs for BNI

We used the Lax-Friedrichs method previously, for the advection equation. However, in the advection
equation, u was some quantity being carried by the flow, and the flow had a constant velocity c. Now, for
the Burgers nonconservative inviscid equation, the velocity that was c in the advection equation is identical
with u(), and so the Lax-Friedrichs scheme will be written as:

u(i, j + 1) − 0.5(u(i− 1, j) + u(i+ 1, j))

dt
= −u(i, j)

u(i+ 1, j) − u(i− 1, j)

2 dx
BNI Lax-Friedrichs

Create a MATLAB file exercise3.m by starting from your file exercise1.m. Implement the Lax-Friedrichs
method for the BNI equation. You can refer back to exercise4.m from the advection section, to recall how
the Lax-Freidrichs method was implemented there. Of course, back then c was a constant velocity, so you
need to make that change.

Run your program with the same parameters and the Gaussian initial condition.

Your conservation plot for the Lax-Friedrichs solution should look better than what we saw for the upwind
method. While this doesn’t mean the solution is correct, it does mean that the Lax-Friedrichs method is
getting a more physically correct result.

Compare the plot of your final Lax-Friedrichs solution with the plot you got using the upwind method. Both
methods are trying to solve the same problem, so we’d hope to get similar solutions. But when I did this,
it seemd my two curves were different in noticeable ways - just looking at them, in other words. Since we
don’t have a formula for an exact solution, we are in the same situation as someone with two watches that
differ. Can we reassure ourselves that both methods are trying to solve the same problem, and will both get
there eventually?

7 Exercise #4: Compare Upwind and Lax-Friedrichs for BNI

Of course, both our upwind and Lax-Friedrichs methods are approximations to a solution, and they are
approximations with a relatively low spatial discretization of nx=81. So perhaps at least some of the difference
in the two results may be because, while they are both heading towards the same solution, they haven’t
gotten there yet. Let’s try to see whether this is true. We will rerun both computations, using nx=161, and
we will show both solutions in the same plot.

Create the file exercise4.m by copying your upwind code exercise1.m. Your code calculates the upwind
solution, using the variable names uo() and un. Now, carefully, insert your Lax-Friedrichs computation into
the same code, but name these variables vo() and vn(), so that in a single loop, you are computing both
solutions.

Modify your plot command to show both solutions:

plot ( x , un , ’ r− ’ , x , vn , ’b− ’ ) ;
legend ( ’Upwind ’ , ’Lax−Fr i e d r i c h s ’ ) ;
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If, in previous computations, you were computing the conservation property and plotting that at the end,
we don’t need that information for this case. Instead, after the iteration is completed, compute and print
the integral of the difference between the two solutions, which we can write as:

e = sum ( abs ( un( I ) − vn ( I ) ) ) ∗ dx ;

If we had time, we could run exercise4 repeatedly, with finer spatial resolutions, to see numerically whether
the solutions provided by the two methods get closer or not. (However, as we increase nx, we might eventually
also have to increase nt to avoid stability issues. There’s always one more complication than you expect.)

Increase your spatial discretization to nx=161 and run your code. Look carefully at the plot of the last result.
Do the two results look almost identical? Close? Or still very different?

From my results, I concluded that the Lax-Friedrichs solution for nx=81 was too smooth, and that by
increasing nx I got a solution whose shape was much more similar to the upwind result. However, there was
still one noticeable difference between the two curves.

8 The Upwind method for the BCI Equation

Let’s consider the Burgers conservative inviscid equation, now, which is

∂u

∂t
= −1

2

∂u2

∂x
BCI: Burgers conservative inviscid equation

To approximate this equation, we will again assume that the velocity is positive, so that what happens at
node i is affected by changes at node i−1. Therefore, we choose to approximate the right hand side quantity
by a backward difference. This gives us the difference equation:

u(i, j + 1) − u(i, j)

dt
= −1

2

u2(i, j) − u2(i− 1, j)

dx
BCI upwind

and this is the formula we rewrite in terms of uo() and un() for our computation.

9 Exercise #5: Upwind solver for BCI Equation

Create exercise5.m from your file exercise1.m. Rewrite the BCI upwind formula so that it is an explicit
formula for un(I) in terms of uo(IM1) and uo(I), and replace your old upwind formula with this new one.

Run the code with the same parameters you used for exercise1.m. If you are keeping track of conservation,
you should see that, using BCI, the upwind method is able to do a much better job of conservation. In
exercise1, the upwind method will produce a solution that slowly dies down to nothing, whereas using the
BCI form of the equation, the upwind solution can go on and on without loss. This is what we would expect
from an ideal wave.

Of course, in reality, waves do die down eventually; this is not because nature is using the BNI; it’s because
of something physical, called viscosity. We just have time to take a quick look at this factor in the homework
exercise.

10 The Burgers Viscous Equations

Viscosity is a material property of a fluid that resists motion. It is the reason that your can run your finger
quickly through a bowl of water, but not so quickly through a bowl of honey. If a particle in a viscous
fluid begins to move, it feels a drag from its nieghbors, which results in the particle slowing down, and its
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neighbors speeding up. In effect, the moving particle ends up dragging its neighbors along. The effect is
similar to what happens in the heat equation, where a hot spot of high temperature gradually cools down
by “sharing” its heat with its neighbors.

The Burgers equation is a model for fluid flow, and all real fluids have a viscosity. Therefore, it is important
to be able to simulate this physical property. Viscosity is usually denoted by the Greek symbol ν, or spelled
out as nu. It is a positive quantity, and for our problems, it will be a relatively small value, such as ν = 0.001.
The viscosity will multiply a second derivative of the velocity, creating what is known as the diffusion term,
since this represents the way viscosity averages out highs and lows in velocity. Although we will prefer the
conservative version of the Burgers equation, we can write viscous versions in either case:

∂u

∂t
= −u∂u

∂x
+ ν

∂2u

∂x2
BNV: Burgers nonconservative viscous equation

and
∂u

∂t
= −1

2

∂u2

∂x
+ ν

∂2u

∂x2
BCV: Burgers conservative viscous equation

With the addition of viscosity, the BNV and BCV have the form of parabolic partial differential equations.
The standard methods for approximating solutions are known as parabolic methods. In our parabolic
approach, we will use a forward Euler difference in time, and centered differences for both spatial derivatives.

11 Homework: Parabolic solver for BCV Equation

Create a MATLAB file hw7.m by copying exercise5.m.

Insert a statement that sets the viscosity:

nu = 0 . 0 1 ;

Approximate the advection term by a first central difference:

−1

2

∂u2

∂x
≈ −1

2

uo2(IP1) − uo2(IM1)

2 dx

Approximate the diffusion term by a second central difference:

+ν
∂2u

∂x2
≈ +nu

uo(IP1) − 2 uo(I) + uo(IM1)

dx2

Now, using the usual forward Euler approximation for the time term, rewrite the BCV equation using the
discrete approximations, isolate un(I) on the left hand side so that we have a formula. This is the parabolic
scheme for solving the BCV equation.

Run your code with the same values of nx and nt that we have used so far, with the Gaussian wave as the
initial condition. Save a plot of the solution at the last timestep as hw7.png.

Notice the effect of viscosity which tends to average out the wave. You may also notice that the conservation
property does pretty well with this scheme.

Send me the plot hw7.png at jvb25@pitt.edu. I would like to see your work by Friday, 19 June 2020.
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