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We track the angles θ1 and θ2; masses and lengths are parameters

The double pendulum

The double pendulum system can exhibit sensitivity and chaotic solutions.

1 The double pendulum model

In the double pendulum problem, a rod of length l1 is fixed at one end (0,0), and forms an angle θ1 with
the downward vertical, so that its endpoint is at (x1, y1) = (l1 cos(θ1), l1 sin(θ1)). A weight of mass m1 is
attached to this end of the first rod.

A second rod, of length l2 is also attached to this end of the first rod. It forms an angle θ2 with the downward
vertical. A weight of mass m2 is attached to the free end of the second rod. The position of this weight is
(x2, y2) = (x1, y1) + (l2 cos(θ2), l2 sin(θ2)).

Gravity has a force coefficient of g.

The unknowns are the angles and their time derivatives. We store the unknowns in a vector z:

z =


θ1
dθ1
dt
θ2
dθ2
dt


The differential equations become:

z′1 = z2

z′2 = − ((g(2m1 +m2) sin(z1) +m2(g sin(z1 − 2z3) + 2(l2z
2
4 + l1z

2
2 cos(z1 − z3)) sin(z1 − z3)))

2l1(m1 +m2 −m2 cos(z1 − z3)2)

z′3 = z4

z′4 =
(((m1 +m2)(l1z

2
2 + g cos(z1)) + l2m2z

2
4 cos(z1 − z3)) sin(z1 − z3))

l2(m1 +m2 −m2 cos(z1 − z3)2)
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Thes derivatives can be evaluated by calling the following function, which is available on the web page.

1 dzdt = double pendulum der iv ( t , z ) ;

Listing 1: double pendulum data.m returns parameters.

The system has 5 parameters. To start with, we will assign them the following default values:

• g = 9.81 meters
second2

• m1 = 1 kilogram;
• m2 = 1 kilogram;
• l1 = 2 meters;
• l2 = 1 meter;

The values of the parameters can be reported by calling the following function, available on the web page.

1 [ g , m1, m2, l1 , l 2 ] = double pendulum data ( ) ;

Listing 2: double pendulum data.m returns parameters.

Time t will be measured in seconds, and angles θ in radians.

2 The system energy

We are already familiar with the fact that when we model a physical systems, it can be important to evaluate
the energy. If no energy is being added or subtracted from the system, and there’s no friction, then a perfect
model would report the same energy at all times.

We know that the midpoint method is one example of an ODE solver that can exactly conserve energy, if that
energy can be expressed as a quadratic expression in terms of the variables. As it turns out, the energy of the
double pendulum system is not expressible this way, and so we can’t hope for exact conservation. Nonetheless,
we will be interested in seeing how well our various solvers do in at least approximately conserving this
quantity.

Here is the somewhat awful expression for the energy E of the double pendulum, for a given set of variables
z:

T1 = 0.5m1 l
2
1 z

2
2

T2 = 0.5m2 l
2
1 z

2
2 + 0.5m2 l

2
2 z

2
4 +m2 l1 l2 z2 z4 cos(z1 − z3)

V1 = m1 g l1 cos(z1)

V2 = m2 g l1 cos(z1) + m2 g l2 cos(z3)

E = T1 + T2 + V1 + V2

The value of the energy can be reported by calling the following function, which is available on the web page.

1 e = double pendulum energy ( z ) ;

Listing 3: double pendulum energy.m returns the energy

3 Simulate the small perturbation problem with Forward Euler

We will consider a “small perturbation” problem, for which the double pendulum starts at time t = 0 with
the initial condition z(t = 0) = [0.25, 0, 0, 0]. Thus the first pendulum has been deflected to an angle of
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about 15◦. We are interested in studying the system over the time period 0 ≤ t ≤ 50. We start with our
forward Euler code, available on the web page as euler.m.

The data will be numerous, and complicated. In order to have a chance of comprehending what is going on,
we will start by converting the data from angles z1 = θ1, z3 = θ2, to Cartesian coordinates (x1, y1), (x2, y2).
Because we are measuring angles starting from the vertical downward direction, these formulas are not quite
what you would have expected:

1 x1 = l1 ∗ sin ( z1 ) ;
2 y1 = − l 1 ∗ cos ( z1 ) ;
3 x2 = x1 + l2 ∗ sin ( z3 ) ;
4 y2 = y1 − l 2 ∗ cos ( z3 ) ;

Then we will be interested in the following plots:

1. plot (t,x1(t)) and (t,y1(t)), the coordinates of the end of pendulum 1;

2. plot (t,x2(t)) and (t,y2(t)), the coordinates of the end of pendulum 2;

3. plot (x1(t),y1(t)), the positions of the end of pendulum 1;

4. plot (x2(t),y2(t)), the positions of the end of pendulum 2;

5. plot ( t, e(t) ), the energy at each time; include a second reference line displaying e = 0 ;

For small perturbations, plots #1 and #2 should seem roughly periodic and roughly regular. For larger
perturbations, where one or both pendulums can actually swing through the vertical upright position, we
may expect much more complicated behavior. Plot #3 should be a circle, or a portion of a circle for small
problems. Plot #4 should be made by circular paths looping along the circle of plot #1. Plot #5 would be
a perfectly straight line if our ODE solver was exactly conservative. Instead, we can only hope that the line
stays close to its initial value at t = 0. In order to judge whether the variations are significant, it’s helpful
to draw a second line for e = 0, so that the plot has an implicit scale.

4 A code to call euler() for the double pendulum

The Forward Euler code uses a fixed stepsize. To get reasonable results over our time interval, it is necessary
to use a very large number of steps. Here, we didn’t get believable pictures until trying n = 100, 000 steps.
And this is for the small perturbation problem!

1 f = @ double pendulum der iv ;
2 tspan = [ 0 . 0 , 50 .0 ] ;
3 z0 = [ 0 . 2 5 ; 0 . 0 ; 0 . 0 ; 0 . 0 ] ;
4 n = 100000;
5
6 [ t , z ] = eu l e r ( f , tspan , z0 , n ) ;
7 %
8 % Compute Cartes ian coord ina te s .
9 %

10 [ g , m1, m2, l1 , l 2 ] = double pendulum data ( ) ;
11
12 x1 = l1 ∗ sin ( z ( 1 , : ) ) ;
13 y1 = − l 1 ∗ cos ( z ( 1 , : ) ) ;
14 x2 = x1 + l2 ∗ sin ( z ( 3 , : ) ) ;
15 y2 = y1 − l 2 ∗ cos ( z ( 3 , : ) ) ;
16 %
17 % Plot #1.
18 %
19 figure ( 1 ) ;
20 plot ( t , x1 , ’ g ’ , . . .
21 t , y1 , ’ r ’ , . . .
22 ’ LineWidth ’ , 2 ) ;
23 grid ( ’ on ’ ) ;
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24 xlabel ( ’Time ’ ) ;
25 ylabel ( ’ x1 ( t ) , y1 ( t ) ’ ) ;
26 legend ( ’ x1 ’ , ’ y1 ’ ) ;
27 t i t l e ( ’ double pendulum (x1 , y1 ) ’ )
28 f i l ename = ’ double pendulum x1y1 . png ’ ;
29 print ( ’−dpng ’ , f i l ename ) ;
30 fpr intf ( 1 , ’ Graphics saved as ”%s ”\n ’ , f i l ename ) ;
31 %
32 % More p l o t s . . .
33 %

5 Graphic results for the small perturbation problem

Time plots of (t, x1), (t, y1) and (t, x2), (t, y2) show regularity and periodicity

The phase plot shows that pendulum #1 stays on a circular arc, and #2 gently loops around it.below it; the
energy plot shows approximate conservation.

6 The medium and large perturbation problems

The graohic results from the small perturbation problem suggest that the solution can exhibit regularity and
periodicity for both (x1, y1) and (x2, y2), the positions of the two pendulum masses. We see that the phase
portrait is pretty calm, with the first pendulum tracing a thin line, while the thicker line for the second

4



pendulum mass indicates that its motion is somewhat more complicated. Finally, the energy plot shows
that the solver can only attain a “reasonable” amount of energy conservation, but the energy clearly varies,
so that our computational model is only approximately tracking the mathematical ideal of perfect energy
conservation.

Now let us consider three sets of initial conditions:

1. small: z = [0.25, 0, 0, 0];

2. medium: z = [π/3, 0, 0, 2];

3. large: z = [π, 0, π, 4];

We have already considered the small perturbation case, so it is up to you to run the medium and large
perturbations, make the plots, and try to decide what they are telling you.

You may want to check whether the results would change significantly if you increase the number of steps
(for a fixed step method) or tighten the error tolerance (for an adaptive method). If the energy conservation
improves, for instance, then you might conclude that the first computation was simply not accurate enough.
Otherwise, you might wonder whether this ODE system can be too wild to approximate accurately.

7 An animation option

There is a MATLAB program, written by Alexander Erlich, which can solve the double pendulum problem,
display the pendulum system, and make a movie of the results. Watching the animation for various pertur-
bation sizes, it is easy to see how the system can be regular and rhythmic for small perturbation, becoming
chaotic when more energy is available, so that the pendulums can both swing full circle.

On the course website, there is a copy of the program, set up to solve the small perturbation problem, in the
file double pendulum movie small.m, as well as the resulting animation double pendulum movie small.avi. To
change the code to do the medium or large perturbation problems only requires changing the data in the
initial segment of the code.

In that initial code, you can also easily see how to choose different values for the gravitational, mass, and
length parameters, or to experiment with other initial conditions.

8 REPORT

We have presented all the theoretical material and examples that we wanted. In the remaining time, we
are asking you to do some independent investigation and prepare a final LaTeX report. You don’t have
to repeat everything we have talked about, but you should be able to make an intelligent discussion of the
issues we have looked into for solving differential equations.

Unless you find another problem that is more interesting, I would suggest that you concentrate on this
double pendulum problem, and try out some of the techniques we have discussed. You can take a look
at the Wikipedia page about the double pendulum problem to get some more background and references.
The equations are pretty complicated, but we can still approximate solutions using the methods we have
discussed.

A suitable report might cover consider some (but not all!) of the following items:

1. Describe the problem with picture and equations;

2. Solve the small perturbation problem with the forward Euler method, and explain why you need so
many steps to get a reasonable answer.
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3. Discuss the fact that the solution is easy to approximate for low energy, but becomes very sensitive
and irregular for higher energy.

4. Define a “good” approximation as one for which the energy is never more than 10% above or below
the initial energy;

5. Look at how, when using a fixed step size, a higher order method gives a “good” approximation using
much fewer steps.

6. Try an adaptive stepsize method like rk12 adapt.m, and describe what you have to do to get a “good”
approximation.

7. Consider the “medium” or “large” perturbation problems. Try to get a “good” approximation. (This
may not be possible.) Use plots to show that the solution behaves much differently than it didfor the
small perturbation.

8. Compare the midpoint method and a comparable second order fixed-step method like rk2, and plot
the energy over time in both cases. Does the midpoint method do a better job of energy conservation?

Please work on this report over the next three weeks, and check in with me or Professor Trenchea each week.
Your reports will be due by April 17, 2020.
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