
 

Intro Math Problem Solving
October 24

Arrays: Review + New
The Normal Distribution
A Random Walk in 1D
A Random Walk in 2D



 

References

Chapter 6, Section 2 of our textbook discusses 
these topics, and can be useful for comparison 
and background to these notes.

"Insight Through Computing" is available as an 
ebook on the library web site, and 
“chapter6.pdf” is also in today's Canvas folder.

Brian Hayes has an interesting article on this 
topic, called “How to Avoid Yourself”, available 
in today’s Canvas folder as “self_avoidance.pdf”.



 

Vectors: Arrays of Numbers



 

Row and Column Vectors

Because this is an important distinction in 
linear algebra, every MATLAB list is 
either a row vector or a column vector.

We aren’t doing linear algebra yet, so 
there are only a few important things 
to say about the difference.



 

Initialize a row vector

a = [ 1, 2, 3 ];
b = [ 3 4 5 ];  <- Comma separators are optional

c = linspace ( 0.0, 10.0, 101 );

In functions with (m,n) input, specify m=1 row and n=anything 
columns:

d = zeros ( 1, 10 );
e = ones ( 1, 5 );
f = rand ( 1, 20 );
g = randn ( 1, 100 );
h = randi ( [ 10, 20 ], 1, 5 ),  



 

Initialize a column vector

a = [ 1; 2; 3 ];  <- semicolons must be used.

In functions with (m,n) input, specify m=anything 
row1 and n=1 column:

d = zeros ( 10, 1 );
e = ones ( 5, 1 );
f = rand ( 20, 1 );
g = randn ( 100, 1 );
h = randi ( [10,20], 5, 1 );



 

An easy mistake

Many MATLAB functions with (m,n) input will 
allow you to specify a single value (m) instead.

This looks like you’re defining a vector, but you’re 
actually setting up an mxm matrix!

d = zeros ( 5 );              <- 5x5 matrix!
e = ones ( 6 );                <- 6x6 matrix!
f = rand ( 7 );                <- 7x7 matrix!
g = randn ( 8 );              <- 8x8 matrix!
h = randi ( [10,20], 9 );  <- 9x9 matrix!



 

Transpose

We don’t need to do this yet, but you can convert a row vector to 
column form, and vice versa, by using the transpose operator, which is 
simply an apostrophe.

x = [ 1, 2, 3];

y = x’;  
  y is 
   [ 1;
    2;
    3 ]
   
z = y’;
  z is [ 1, 2, 3]



 

Recall Vector Functions

If x is a row or column vector, we can:

l          = length ( x );
xmax   = max ( x );
xmean = mean ( x ); <- average value
xmin    = min ( x );
xnorm  = norm ( x ); <- sqrt of sum of squares.
xstd    = std ( x );    <- standard deviation
xsum   = sum ( x );



 

Selecting Some of a Vector

Suppose x = [ 11, 12, 13, 14, 15, 16, 17, 18 ];

If we type “x(1)”, we see “11”.
But if we type “x(2:4)” we see “12, 13, 14”.

We can use the same “colon notation” that we have 
used in “for” loops, but now we use it to specify a 
portion of a vector.

You could even do “x(1:2:8)” to see 11, 13, 15, 17.



 

Selecting Some of a Vector

If x = [ 11, 12, 13, 14, 15, 16, 17, 18 ];

we can use colon indexing to examine or change portions of the 
vector:

   x(2:4) = 7;
   x = [ 11, 7, 7, 7, 15, 16, 17, 18 ];

  x(4:5) = x(4:5) + 10;
  x = [ 11, 7, 7, 17, 25, 16, 17, 18 ];

  x(6:8) = x(1:3);
  x = [ 11, 7, 7, 17, 25, 11, 7, 7 ];  



 

Using Logic on Vectors

How many entries of X are greater than 1?  We can 
answer this with a for loop.

But another way creates a logical vector.

  x = [ 1.2, 0.7, 2.3, 1.5, -1.0 ];
 
  is_greater_than_1 = ( x > 1 );
  is_greater_than_1 will be [1, 0, 1, 1, 0 ];

  how_many = sum ( is_greater_than_1 );
  how_many will be 3.



 

OR / AND for Vectors

We have been using || and && for OR and AND 
operations.

However, just like the DOT operators, we have 
to do something slightly different when 
working with vectors.

We have to use | instead of ||, and & instead 
of &&, when making logical expressions 
involving vectors!

        i = ( 0.0 < x & x < 1 )
        j = ( x == 0 | y == 0 ) 



 

More Logic Examples

x = [ 1.2, 0.7, 2.3, 1.5, -1.0 ];

small = ( abs ( x ) <= 1 );  small is [0,1,0,0,1];
positive = ( 0.0 < x );       positive is [1,1,1,0];
between12 = ( 1 <= x & x <= 2 ); 
                                      between12 is [1,0,0,1,0].

.



 

A practical example

In a tournament, a loss is -1, a win is +1.  Our 
score is the sum of wins and losses.  How many 
times were we exactly even (score=0)?

      
      score = [0,1,2,1,0,-1,0,-1,0,1];

      i = ( ahead == 0 )
      i is [ 1,0,0,0,1,0,1,0,1,0];

      times = sum ( i ) = 4 times in the tournament.



 

FINDing Values

Instead of asking whether each entry of a vector satisfies some 
condition, we might want a list of the locations of all such entries.  
The FIND command will do this.

    x = [ 1.2, 0.7, 2.3, 1.5, -1.0 ];
    i = find ( x > 1 );

Then i is [ 1, 3, 4 ] because x(1), x(3) and x(4)
are greater than 1.

Moreover, typing “x(i)” will print exactly those values:
  1.2, 2.3, 1.5

When you index a list, the index itself can be a list!



 

More FIND Examples

x = [    1.0347,   0.7269, -0.3034,  0.2939, -0.7873,
           0.8884, -1.1471, -1.0689,  -0.8095, -2.9443 ]

i = find ( abs ( x ) <= 1 );        i = [ 2, 3, 4, 5, 6, 9 ];
j = find ( 0.0 < x );                j = [ 1, 2, 4, 6 ]
k = find ( 1 <= x & x <= 2 );    k = [ 1, 7, 8 ]
l = find ( x == 0 );                 l = [];

.



 

Using FIND

You can use FIND to find the parts of a vector you are interested in, and then 
print, or sum, or otherwise work with just that set.

x = [    1.0347,   0.7269, -0.3034,  0.2939, -0.7873,
           0.8884, -1.1471, -1.0689,  -0.8095, -2.9443 ]

j = find ( 0.0 < x );                j = [ 1, 2, 4, 6 ]

>> x(j)

ans =

    1.0347
    0.7269
    0.2939
    0.8884



 

Quiz

x = [ 0, 1, 2, 1, 2, 3, 2, 1, 0, -1, -2, -1, 0, 1 ];

Without using FOR or IF/ELSE, write MATLAB 
expressions that:

A) count the number of x values equal to 1;
B) list the locations of x values equal to 1;
C) count the number of x values equal to 0;
D) list locations of x values less than 0, print them;
E) count x values equal to 1 OR 3;
F) count x values NOT equal to 1;



 

Quiz Answers

A) count the number of x values equal to 1:
     i = ( x == 1 );     num = sum ( i );
B) list the locations of x values equal to 1:
     j = find ( x == 1 );
C) count the number of x values equal to 0:
     i = ( x == 0 );    num = sum ( i );
D) list the locations of x values less than 0 and print:
     j = find ( x < 0 ); x(j)
E) count x values equal to 1 OR 3:
     i = ( x == 1 ) || ( x == 3 );     num = sum ( i );
F) count x values NOT equal to 1:
     i = ( x ~= 1 );    num = sum ( i );



 

Adding Values to a Row Vector

If X is a row vector, we add entries to it separated 
by COMMAS:

  x = [ 1, 2, 3];
  y = [ 4, 5 ];

  x = [ x, 99 ];      x is now [1,2,3,99];
  x = [ 48, x ];      x is now [48,1,2,3,99];
  x = [ x, y ];         x is now [48,1,2,3,99,4,5]
  y = [ y, y, y ];       y is now [4,5,4,5,4,5]



 

Adding Values to a Column Vector

If X is a column vector, we add entries to it, 
separated by SEMICOLONS;

  x = [ 1; 2; 3];
  y = [ 4; 5 ];

  x = [ x; 99 ];      x is now [1;2;3;99];
  x = [ 48; x ];      x is now [48;1;2;3;99];
  x = [ x; y ];         x is now [48;1;2;3;99;4;5]
  y = [ y; y; y ];       y is now [4;5;4;5;4;5]



 

Adding Values by Index 

Another way to add values to a list is to pick an index (location) and store 
the new value there.  

Suppose we have a fever, and from time to time we take our temperature.  
We could plan to store these values in a list called “temp”, but we don’t 
know how many times we will take the measurements.  

Then we need two things, a list “temp” and a current index “k”, which 
starts at 0.  Every time we take a measurement, we do two things:

    k = k + 1;
    temp(k) = current thermometer reading.

MATLAB allows us to create a list that grows as we need it.



 

Growing List Example

temp(1) = 98.6;
length ( temp )
temp

temp(2) = 99.1;
length ( temp )
temp

temp(4) = 101.1
length ( temp )
temp                 <- What will be in temp(3)?



 

Growing List

We will need this growing list example to 
follow a random walker who moves from 
one numbered location to another.

Each time the walker takes a step, we 
want to add the new location to our 
growing list.

When we are done, we will have a list of 
all the places the walker visited.



 

The Normal Distribution



 

The Normal Distribution

We have already seen that MATLAB has a random 
number generator function randn() which generates 
normal, rather than uniform, random numbers.

 
To begin with, let’s compute 5 samples of each type:

x1 = rand(1,5):
  0.8147  0.9058  0.1270    0.9134  0.6324

x2 = randn(1,5)
 -1.3077 -0.4336  0.3426  3.5784  2.7694



 

RAND vs RANDN

We note that the rand() values are between 
0 and 1, while the randn() values are more 
spread out, and include negative values.  

But we see why the word “uniform” is used 
for rand if we compute a histogram of 
10,000 values from each function:

x1 = rand(1,10000);  histogram ( x1 );
x2 = randn(1,10000); histogram ( x2 );



 

histogram(x1) vs histogram(x2)



 

Sampling Different Kinds of Events

Uniform random numbers are useful when 
describing events for which each outcome is 
thought to be equally likely.  We use randi() 
when there are only a limited number of 
choices (integer between a and b), and rand() 
when there is a range (real number between 0 
and 1).

Normal random numbers are useful when there is 
a most likely or average outcome, and the 
likelihood of other outcomes depends on being 
close to the average.



 

The Normal Distribution

In the mathematical theory of probability, there 
is a function, called the normal probability 
distribution function or normal pdf, which 
indicates the likelihood of any event.  

We think of an “event” as a number x.  
“mu”, the mean, is the most likely outcome.  
“sigma”, the standard deviation, measures how 

far away from the mean most outcomes will be.
The most common values are mu=0, sigma=1.



 

The Normal Distribution

The Normal PDF is then:



 

normal_pdf.m

x = linspace ( -4, +4, 101 );
y = normal_pdf ( x, 0, 1 );
plot ( x, y, 'linewidth', 3 )
grid on
xlabel ( '<-- X -->' )
ylabel ( '<-- PDF(X) -->' )
title ( 'Normal PDF, \mu=0,\sigma=1', 'Fontsize', 24 )
print ( '-djpeg', 'normal_pdf.jpg' )

function value = normal_pdf ( x, mu, sigma )
  value = exp ( - ( x - mu ) .^2 / 2.0 / sigma^2 ) ...
    / sqrt ( 2.0 * pi * sigma^2 );
  return
end



 

The Standard Deviation

The quantity “sigma”, or standard 
deviation, gives a measure of how 
spread out the sample values will be 
from a normal distribution.

In particular, it estimates that about 
34% of the values will be within one 
sigma below the mean, and 34% will be 
within one sigma above the mean.

We can test this with an experiment.



 

The Standard Deviation



 

For RANDN, Mu = 0, Sigma = 1

x = randn ( 1, 1000 );

i1 = ( -1.0 <= x & x <= 0.0 );
i2 = (  0.0 <= x & x <= 1.0 );

n1 = sum ( i1 );    ( n1 is 337 )
n2 = sum ( i2 );   ( n2 is 354 )

How would we count the items that are between 1 and 2 
standard deviations away, and about how many should 
we expect to find?



 

Random doesn’t mean patternless!

We have discussed the normal pdf because 
we are about to look at a random process 
for which some behaviors will start to 
match the pattern we have seen for 
normal random numbers.

This means that even when a process is 
random, there may be features of it 
which are predictable, or have a pattern, 
at least if we think in terms of averages.



 

A Random Walk in 1 Dimension



 

Why Random Walks?

A random walk seems like a peculiar thing to study.  
However, it models a real physical situation, 
“Brownian motion”, noticed by Robert Brown in 1827, 
watching grains of pollen suspended in water, that 
randomly jiggled.

The puzzle wasn’t fully solved until Albert Einstein 
explained this by the collision of the pollen with 
individual water molecules whose velocities had a 
random variation.

From this, Einstein was able to show that a particle in 
Brownian motion would tend to drift away from its 
original position with a predictable variation.  



 

Rules for a Random Walk in 1D

Consider a sidewalk of numbered squares; perhaps 
numbered x=-N to x=+N;

 We put a walker on some square, perhaps the one 
labeled "x=0";

The walker takes a series of steps, each randomly 
chosen to the left (x=x-1) or right (x=x+1).

The walk stops at the boundary: (x=-N or x=+N).
We keep track of each step in an array "track".



 

We need a "growing list" for random walk

In a "random walk", we start at a given 
location, and then make random moves 
until we reach a boundary or a goal.

If we wish to list the steps involved in the 
random walk, we don't know in advance 
how many steps are involved.

MATLAB allows us to start a list, and just 
keep adding one more element to it, until 
we decide we have completed the walk.



 

Simulate 1 Random Walk
function track = walker_1d ( n )       <- User specifies N, the size of "sidewalk"

  x = 0;
  k = 1;  track(k) = x;      % <- Begin the list

  while ( abs ( x ) < n )    % <- Stop at boundary.

    i = randi ( [ 1, 2 ] );     % <- Randomly choose 1 or 2.

    if ( i == 1 )
      x = x - 1;
    else
      x = x + 1;
    end

    k = k + 1;  track(k) = x;  % <- Add this step to list.

  end

  return
end



 

Random Walk of 150 Steps



 

How Was That Plot Drawn?

How did I make the plot of the 1D random 
walk?

I know there were 150 steps.  
I can draw red barrier lines.
If TRACK(I) = X, I want to draw a blue dot 

at location (X, I).
I want to draw a line connecting each 

consecutive pair of dots.
Could you do this?



 

Was 150 Steps Typical?

In the previous example, it took 150 steps for the 
random walker to get 10 units away from the start.

But it’s possible to reach that spot by taking just 10 
steps.  If we try this experiment many times, 
someone should actually make it that fast.

A single random experiment gives us an answer, but it 
won’t be repeatable.  The answer we can look for, 
however, is what the typical or average number of 
steps might be.

To do that, we can simply try a reasonably large number 
of experiments, record the length of each, and 
report the average.



 

Seek Average for N=10 random walk

function average = walker_1d_average ( n, m )

%% WALKER_1D_AVERAGE averages the length of a random walk on [-N,+N].
%
%  It is assumed the walker starts at 0, and randomly steps left or
%  right until reaching -N or +N.  The number of steps taken is the
%  length of the walk.
%
%  This program takes M random walks, and reports the average length.
%
  average = 0.0;

  for i = 1 : m
    track = walker_1d ( n );
    average = average + length ( track ) - 1;
  end

  average = average / m;

  return
end



 

Estimated Average for N = 10 is about 97

n = 10;
m = 1000;
average = walker_1d_average ( n, m )
fprintf ( ‘Averaging over %d walks\n’, m );
fprintf ( ‘The sidewalk runs from %d to %d\n’, -n, n );
fprintf ( ‘The average walk takes %g steps\n’, average );

Averaging over 1000 walks
The sidewalk runs from -10 to 10
The average walk takes 96.9940 steps



 

How Does the Average Depend on N?

When N = 10, the average number of steps is 
about 97, or almost 100, which happens to 
be 10^2.

We might hope that this relationship is 
correct, and for any value of N, the average 
number of steps is N^2.

Before trying to prove an idea like this, it’s 
worth trying to see if the evidence 
supports it.  So we will look at a range of N 
values and estimate the walk lengths.



 

walker_1d_averages.m

m = 1000;
fprintf ( 'Averages are based on %d trials.\n', m );

fprintf ( '\n' );
fprintf ( '   N    Average length\n' );
fprintf ( '\n' );

for n = 1 : 20
  average(n) = walker_1d_average ( n, m );
  fprintf ( '  %2d  %f\n', n, average(n) );
end
x = 1:20;

plot ( x, average, 'b.', x, x.^2, 'r-', 'LineWidth', 3, 'MarkerSize', 50 );
grid on
xlabel ( '<-- Walk Width -->' );
ylabel ( '<-- Average Steps -->' );
title ( 'Steps taken in random walks', 'Fontsize', 24 );
print ( '-djpeg', 'walker_1d_averages.jpg' );



 

Average "Escape" Time is N^2

   N    Average length

   1    1.000000
   2    3.990000
   3    8.914000
   4    15.970000
   5    25.732000
   6    36.710000
   7    50.714000
   8    64.234000
   9    78.724000
  10    99.902000
  11    119.124000
  12    150.124000
  13    167.358000
  14    188.682000
  15    229.628000
  16    258.818000
  17    289.834000
  18    331.768000
  19    379.750000
  20    399.604000



 

Watch Many Walkers Over Time

Instead of watching one walker, consider 
1,000, all starting at 0.  As time passes, 
they spread out.  Although their steps 
are random, the overall pattern is 
regular, and can be approximated by the 
normal probability function:



 

Bin That Data!

We don’t want to plot 1000 walker tracks.  We won’t 
see any pattern.

But suppose instead we make boxes (technically 
called bins) labeled -41 through +41, and, at any 
time, count how many walkers were occupying that 
position.

At the first time, all the walkers are at position 0. 
At the second time, about half are at 1, and half at 

-1.
After that, we assume that they gradually spread 

out, and we may see a pattern in this behavior.



 

1000 Walkers after 50 Steps



 

The Normal Distribution



 

How was that plot drawn?

Each walker can be in any location from -41 to +41.
Each entry of my “bins” array counts how many walkers 

are at a specific location.
bins(1) counts the walkers at -41:
  i = ( x == -41 )
  bins(1) = sum ( i )

Once I have the bins set, I call MATLAB’s bar() 
plotting command:

  bar ( -41:41, bins );



 

Walkers track Locations

If we have 1 walker, it makes sense to create a list 
"track()" that lists the sequence of locations visited. 
 At any one time, we know a single number, "x".

If we have 1000 walkers, then we might create 1000 
lists called "track1" ... "track1000".  These lists will 
have different lengths.  At any one time, we will 
have up to 1000 active walkers to keep track of.

Following a large number of walkers can become a 
difficult task to manage!



 

Locations Count Walkers

Instead of each walker keeping a sort of diary of 
where it is, we could have each location report how 
many walkers are there.

In the plots we looked at a moment ago, there were 
1000 walkers, but 81 locations.  

If we set up a list of length 81, we can count the 
number of walkers in location -40, -39, -38, ..., -1, 0, 
+1, ..., 38, 39, 40.

In other words, the bins we used for plotting could 
perhaps also be used for computing.



 

A Random Walk in 2D



 

Rules for a Random Walk in 2D

Consider a checkerboard of numbered squares, indexed 
by (X,Y).  -N <= X,Y <= +N.

 We put a walker on some square, perhaps the one 
labeled "(0,0)";

The walker repeatedly chooses the next step at random: 
north, south, east or west;

To step North, for instance, we move from (X,Y) to  
(X,Y+1).

The walk stops at the boundary, where X or Y reaches 
the value -N or +N.

We keep track of each step in arrays  (growing lists) 
"xtrack" and "ytrack".



 

walker_2d.m
function [ xtrack, ytrack ] = walker_2d ( n )

  x = 0;   y = 0;
  k = 1;   xtrack(k) = x;  ytrack(k) = y;

  while ( abs ( x ) < n && abs ( y ) < n )

    i = randi ( [ 1, 4 ] );

    if ( i == 1 )
      y = y + 1;
    elseif ( i == 2 )
      y = y - 1;
    elseif ( i == 3 )
      x = x + 1;
    else
      x = x - 1;
    end

    k = k + 1;    xtrack(k) = x;   ytrack(k) = y;

  end

  return
end



 

A Typical Random Walk in the Square



 

Step Lengths Pull Away From N^2



 

Try Random Walks in Diamond



 

Diamond Walk Lengths Go Below N^2



 

Try Walks in Circle



 

Walk Lengths Closely Match N^2
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