
 

Intro Math Problem Solving
October 5

Taylor Polynomials
Colors
Compute and Display Triangle Centroid
Design the letter "A"
Design a Flag
A Little More About Lists (“Vectors”)
Polygons and Triangulation
Homework #5



 

Taylor Polynomials

As you will learn in calculus, a function 
f(x) can often be represented by an 
infinite Taylor series, which has the 
mysterious form:



 

exp(x) and sin(x)

For exp(x), the series looks like:
  exp(x) = 1 + x + x^2/2! + x^3/3! + ...
and for sin(x), it is:
  sin(x) = x/1! - x^3/3^! + x^5/5! - x^7/7!...

By stopping the summing process early, we 
get a Taylor polynomial, which can 
approximate the function near x=0.



 

Series, Sequences, Stepping Stones

We have talked about infinite series and 
approximating them by stopping early.

There is a "stepping stone" relation for the 
sequence of successive terms.  For example, 
for exp(x), if we call the i-th term a(i), then:

          a(i-1) = x^(i-1)/(i-1)!
          a(i) = x^i/i!
so a stepping stone rule is:
          a(0) = 1;
          a(i) = a(i-1) * x / i;



 

Plotting Taylor Polynomials

The codes taylor_exp.m and taylor_sine.m 
demonstrate how a Taylor polynomial can be 
computed and plotted and compared to the 
original function.

The big advantage is that polynomials are much 
easier to work with and to understand.

The codes contain complicated commands we 
haven't talked about, but they illustrate why 
Taylor polynomials are so useful, and inside the 
codes you can still spot a lot of MATLAB you 
can understand or guess at. 



 

A piece of taylor_exp.m

for i = 0 : n

  if ( 0 < i )
    plot ( x, p, 'w-', 'linewidth', 3 );  %  White out previous polynomial
  end

  if ( i == 0 )
    term = ones ( 1, dots );  % Get a vector of 1’s
  else
    term = term .* x / i;      % <-- x^i/i! = x^(i-1)/(i-1)! * ( x / i )
  end

  p = p + term;  % Add next term to Taylor polynomial

  plot ( x, p, 'r-', 'linewidth', 3 );  % Plot the updated polyomial.

end



 

9th degree Taylor Polynomial for Sin(x)



 

8 Easy Colors

Both the plot() and fill() commands allow 
us to choose a color from 8 choices:

  ‘r’, ‘g’, ‘b’: red/green/blue
  ‘c’,’m’, ‘y’: cyan/magenta/yellow
  ‘k’,’w’:      black/white

plot ( xlist, ylist, ‘g-’ )  line in green
fill ( xlist, ylist, ‘c’ )     fill with cyan



 

RGB Colors

To specify more colors, we have to use MATLAB’s 
RGB description:

    mycolor = [ red, green, blue ];
where each value is between 0 and 1.
  orange = [ 1.0, 0.4, 0.0 ];
  maroon = [ 0.4, 0.0, 0.0 ];

plot ( xlist, ylist, ‘LineColor’, orange );

fill ( xlist, ylist, maroon );



 

Color is a another list or vector

Any color is a mix of red, green, and blue.

Represent a color with a length-3 vector
and an “rgb convention”. 

            c = [ 0.25  0.63  0.00 ]

red value
between
0 and 1

blue value
between
0 and 1

green value
between
0 and 1



 

Our 8 Easy Colors:

White [1 1 1]
Blue [0 0 1]
Green [0 1 0]
Cyan   [0 1 1]
Red [1 0 0]
Magenta [1 0 1]
Yellow [1 1 0]
Black [0 0 0]



 

DEMO: Exploring [r,g,b] colors

The “colors_random.m” script will show  
you some random [r,g,b] colors.

The “colors_rgb.m” script will let you 
specify the [r,g,b] values and show you 
the corresponding color.

So colors can be specified with the 8 
shortcut abbreviations, or an RGB list.



 

Using colors with plot()

The plot command accepts one letter colors in commands like:
    plot ( xlist, ylist, ‘r-’ ) 
    plot ( xlist, ylist, ‘bo-’ )

To use an RGB color:

  color = [ 1.0, 0.4, 0.0 ];
  plot ( xlist, ylist, ‘LineColor’, color );
or
  plot ( xlist, ylist, ‘LineColor’, [ 0.1, 0.5, 0.3] );

The fill(xlist,ylist,color) command will accept one-letter colors (‘r’, 
‘c’, ‘k’) OR color vectors  such as color = [ 1.0, 0.4, 0.0].



 

Using colors with fill()

The fill command accepts one letter colors 
and RGB colors in the same way:

    fill ( xlist, ylist, ‘r’ ) 
or
    color = [ 0.9, 0.5, 0.5 ];
    fill ( xlist, ylist, color );
or
  fill ( xlist, ylist, [ 0.12, 0.37, 0.83] );



 

The Centroid Problem

Suppose we have a triangle T with corners A, B, and C.
The centroid of T is the “balance point” of the triangle.  

Any line through the centroid will split it into two equal 
areas.

The centroid can be computed as the average of the points 
A, B, and C.

Our task is to:
  Draw a triangle T.
  Compute the centroid and display it.
  Draw dashed lines from each corner to the centroid.     



 

User Picks Points with ginput()

The function ginput() lets us click on 
selected points on the screen.  

We can use this to choose an arbitrary 
triangle to work on.

[xlist,ylist] = ginput();  Pick til RETURN;←

[xlist,ylist] = ginput(3);   Pick list of 3.←

[ x, y ] = ginput(1);  Pick one point;←



 

Get triangle corners A, B, C

[ ax, ay ] = ginput(1);
[ bx, by ] = ginput(1);
[ cx, cy ] = ginput(1);

xlist = [ ax, bx, cx ];   collect points into a list←

ylist = [ ay, by, cy ];

fill ( xlist, ylist, ‘y’ );                Fill triangle with yellow;←

hold on;                                   More graphics coming!←

plot ( [ xlist, ax ], [ylist,ay], ‘b-’ );  Blue outline. ←



 

Compute Centroid

Centroid is average of vertices:
  dx = ( ax + bx + cx ) / 3.0;
  dy = ( ay + by + cy ) / 3.0;
OR:
  dx = ( xlist(1) + xlist(2) + xlist(3) ) / 3.0;
  dy = ( ylist(1) + ylist(2) + ylist(3) ) / 3.0;

Since xlist = [ ax, bx, cx], we can find any of the three 
values simply by specifying its location within the list.

The location in parentheses (1), (2), or (3), is called a 
subscript or index.  We will come back to this topic soon!



 

Mark the Centroid

One version of the plot command doesn’t draw 
lines, but instead puts markers at the given 
locations.  To mark with blue asterisks:

      plot ( xlist, ylist, ‘b*’ );
Choices include ‘r.’ or ‘go’ or ‘bs’ or ‘cp’.

plot ( dx, dy, 'k.', 'MarkerSize', 50 );

‘MarkerSize’ makes the symbols bigger.



 

Connect Corners to Centroid

Just to make the plot fancy, we connect each corner to the 
centroid with a dashed line.  We could issue three plot() 
commands to do this, but instead we use a for loop:

for i = 1 : 3
  plot ( [ xlist(i), dx ], [ ylist(i), dy ], 'r--', 'LineWidth', 3 );
end

By using subscripted values in the list, we are able to write 
the command one time, but have the for loop execute three 
versions of it, which takes care of all the drawing.



 

A Sample Centroid Plot



 

Suppose we want to plot a big "A"



 

How to Make an “A” in this Class



 

big_a.m

% big_a.m
% Draw a big letter A.
%
xlist1 = [ 1.8, 2.6, 2.8, 4.2, 4.4, 5.2, 4.0, 3.2 ];
ylist1 = [ 1.2, 1.2, 2.0, 2.0, 1.2, 1.2, 5.0, 5.0 ];

xlist2 = [ 3.0, 4.2, 3.6 ];
ylist2 = [ 2.6, 2.6, 4.4 ];

fill ( xlist1, ylist1, 'r' );
hold on
fill ( xlist2, ylist2, 'w' );
%
grid on
print ( '-djpeg', 'big_a.jpg' );



 

big_a.jpg



 

Design a Flag

For the new country of Vatechia, we want to 
plot a flag.  It should be 6 units wide and 4 
units tall.  This makes 24 little squares, and 
we want a yellow star in every other square, 
and a blue background:

  *      *      *
      *      *      *
  *      *      *
    *       *      *



 

Fill the Background First

To make the blue background, we need to set 
the vertices of a rectangle of width 6 and 
height 4.  (By the way, we need to list the 
vertices in some order, not just scrambled!)

      fill ( [ 0, 6, 6, 0 ], [ 0, 0, 4, 4 ], ‘b’ );

We do the background first.  That way, the 
stars appear in front of the background.



 

The “star()” function

I wrote a function to draw stars:
    star ( xc, yc, r, c );
To use it, specify:
    xc, yc: coordinates of the star center;
    r:         the radius (size) of the star;
    c:         the color (‘r’, ‘g’, ‘b’, ‘c’, …);
A function makes it easy to draw lots of stars in a 

systematic way.
We will spend a whole class, later, on how to 

create and use our own functions.



 

The “guts” of star.m

function star ( xc, yc, r, color )

  a = pi / 2 + linspace ( 0, 2 * pi, 11 );   Get 11 (actually 10) equal angles.←

  ca = cos ( a );
  sa = sin ( a );

  xlist = r * ca;                                   Locate 10 points on circle of radius r.←
  ylist = r * sa;

  xlist(2:2:10) = xlist(2:2:10) / (2*(1+sin(pi/10)));   Shrink 5 of the points.←
  ylist(2:2:10) = ylist(2:2:10) / (2*(1+sin(pi/10)));

  xlist = xc + xlist;                          move points to center (xc,yc)←
  ylist = yc + ylist;

  fill ( xlist, ylist, color );                Draw the shape.←



 

Where do we want stars?

A pair of for loops move row I (1 to 4 ) and column J (1 to 6).  

In row I=1, we want stars in columns J=2, 4, 6;
In row I=2, we want stars in columns J=1, 3, 5;
In row I=3, we want stars in columns J=2, 4, 6;
In row I=4, we want stars in columns J=1, 3, 5;

When I is odd, we want the even J’s.
When I is even, we want the odd J’s.

So when I + J is odd, we want to draw a star.



 

A Field of Stars

hold on
for i = 1 : 4             Make 4 rows←

  for j = 1 : 6          Each row has 6 columns←
    if ( mod ( i + j, 2 ) == 1 )   Only draw some←

      star ( j – 1/2, i – 1/2, 0.5, ‘y’ );
    end
  end
end
hold off



 

Flag of Vatechia



 

Ways to Create a List

We know several ways to create a list:
  xlist = []; xlist = [ xlist, new_value ];
  xlist = [ 1, 2, 3, 4 ];
  xlist = linspace ( 15, 20, 51 );

New ways to make a list:
  xlist = zeros ( 1, 10 );  list of 10 0’s.←

  xlist = ones ( 1, 10 );   list of 10 1’s.←

  xlist = rand ( 1, 10 );   list of 10 random values between 0 and 1.←

  xlist = randn ( 1, 10 );  list of 10 “normal” random values, with average 0.←

The (1,10) means “1 row, 10 columns”.
If we used (10,1) we’d get a column vector, and if we used (5,2) we’d get a 5x2 

matrix, neither of which we want right now!  

(But try xlist = ones(5,2) and see what happens!)



 

Functions of Lists

We have seen that we can apply functions to 
a list and get a list of results.  Some useful 
functions include:

big = max ( xlist );
small = min ( xlist );
ave = mean ( list );     average them←
total = sum ( xlist );  add ‘em up←
n = length ( xlist );   how long is this list?←
ylist = sort ( xlist );   sort the list.←



 

Example: 100 random numbers
list_std.m

x = rand ( 1, 100 );
x(1:5);   print first five values;←

y = sort ( x );
y(1:5);   print first five values.←

n = length ( y );
yave = sum ( y ) / n;
yave = mean ( y );   same as previous line←

ystd = sqrt ( sum ( ( y – yave ).^2 ) / n );
ystd = sqrt ( mean ( ( y – yave ).^2 ) );



 

Picking a List Entry

If xlist contains 5 values, then they each 
have an “address” or “index” or 
“subscript” based on their position.

Using that index, you can copy, modify or 
completely replace any single value.

This also means that a for loop can be 
used to define the entries of a list.



 

Indexing a List

Set xlist to [ 101, 202, 303, 404, 505 ];
    xlist(2)       will print “202”←

    xlist(4) = xlist(4) + 12
xlist is now [ 101, 202, 303, 416, 505 ];
    xlist(1) = xlist(2) + xlist(5);
xlist is now [ 707, 202, 303, 416, 505 ];
    max ( xlist )   will print “707”←

                



 

Define a List with “for”

Compute and store the first 100 Fibonacci numbers

n = 100;
f = zeros ( 1, n );   set up space for the list.←

for i = 1 : n
  if ( i == 1 )
    f(i) = 1;
  elseif ( i == 2 )
    f(i) = 1;
  else
    f(i) = f(i-1) + f(i-2);
  end
end



 

Define a list with “for”

Evaluate the Legendre polynomials at x = 0.4;

for i = 1 : n
  if ( i == 1 )
    p(i) = 1.0;
  elseif ( i == 2 )
    p(i) = x;
  else
    p(i) = ( ( 2*i-1) * x * p(i-1) - ( i-1 ) * p(i-2) ) / i; 
  end

end



 

Using Colon Notation

Remember in for loops how we could specify a range 
of values as i=ilo:ihi, or even i=ilo:iskip:ihi?

If xlist = [ 11, 22, 33, 44, 55, 66, 77, 88, 99]
then xlist(2:4) is the values 22, 33, 44.
        xlist(1:2:9) is the values 11,33,55,77,99.

xlist(3:5) = xlist(3:5) + 2 
will result in
xlist = [ 11, 22, 35, 46, 57, 66, 77, 88, 99]



 

Polygons

A polygon is any shape with straight line boundaries.
We'll assume the boundary never crosses itself.
A regular polygon has equal sides and equal angles.  

We can generate an N-sided regular polygon by 
connecting N points separated by equal angles.

For convenience, “x” and “y” might store the N 
coordinates of the points (or “corners” or 
“vertices”). 

Demo: regular_polygon.m  



 

A Regular Pentagon



 

Triangle: the Simplest Polygon

If we know the vertices of a triangle, we can 
compute its area:

  area = 0.5 * ( ...
       x(1) * ( y(2) - y(3) ) ...
    + x(2) * ( y(3) - y(1) ) ...
    + x(3) * ( y(1) - y(2) ) );

And we know the centroid of the triangle is 
found by averaging x and y coordinates.



 

Triangle Centroid Using Lists

We know the centroid of the triangle is found by averaging x 
and y coordinates.

If we stored these coordinates in lists, the centroid 
computation simplifies:

xc = sum ( x ) / 3;
yc = sum ( y ) / 3;

instead of 

dx = ( ax + bx + cx ) / 3;
dy = ( ay + by + cy ) / 3;



 

Given any polygon...



 

...We can "triangulate" it



 

Analysis from Triangles

Once a polygon is triangulated, we can compute 
its area (sum the areas of the triangles); 

The centroid of the polygon is found by 
multiplying each triangle centroid by its 
area, and then dividing by the total area.

Triangulating a shape creates a mathematical 
model that can be analyzed.

Advanced versions of triangulation are used in 
mapping, and in modeling 3D surfaces.



 

A Tiny Portion of Triangulated Greenland



 

A Triangulation for Groundwater



 

A Triangulated Face



 

Question Time

What is the output?

x = [10 20 30];  

y = [3 1 2]

k = y(3)-1;

z = x(k+1)

A. 11   B.  20    C.  21   D.  30    E.  31 



 

Homework #5

(Homework #4 due this Friday, midnight)

hw034: plot several Chebyshev polynomials 
of the second kind on one graph;

hw035: plot the letters "V" and "T" as 
filled polygons;

hw037: using a function I give you called 
"ellipse_fill()", draw a face using ellipses 
of different positions, shapes, and colors.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

