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Exercise

Refer to the triangle on the next page.
1) What is the next row?
2) How does this triangle tell you how to write out (x+y)^4?
3) In 4 coin tosses, how many ways can I get 2 Heads, 2 Tails?
4) What is the probability of 2 Heads, and 2 Tails, in 4 coin 

tosses?
5) How many ways can I choose 5 things from a set of 7?
6) Is there a formula for the number in row N, column K?
7) Is there a way to write out the N-th row of this triangle, 

without any other information?
8) If a 256 steel balls drop down through a pyramid of nails 

involving 9 rows, what pattern are they likely to form? 
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Pascal’s Triangle
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Recall “Formula” Sequences

We think of a formula sequence as a list of 
numbers, whose typical element is a(i).  Given 
nothing but the value of I, we have a formula 
that lets us write the value of a(i) immediately.

Examples:
  Powers of 2: a(i) = 2^i
  Triangular: a(i) = i*(i+1)/2
  Interest: a(i)=original*(1+rate)^i
  Factorial: a(i)=1*2*3*...*i
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Sequences as Stepping Stones

Sometimes, however, a formula is not the best 
way to describe a sequence.

Instead, we are given a rule that tells us how 
to determine the next element a(i) based on 
one or more previous values.

This is sometimes called a recurrence formula, 
or recursion, but it’s more memorable to 
think of it in terms of stepping stones.

(A similar idea in mathematical induction.)
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Math Moment: Factorials

Let’s recall the factorial function, written
  n! = 1*2*3*...*n
Interesting facts:
  It shows up in Taylor series, as in:
    e(x)=1+x+x^2/2!+x^3/3!+…
  It counts permutations, orderings of n objects;
  It counts subsets size k of a n-set:
     n-choose-k = n!/(k! * (n-k)!)
  MATLAB command: value = factorial ( n );
  In MATLAB, 21! is the last value to be computed exactly.
  It’s related to the Gamma function. 
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The Factorial Example

We know the factorial can be described by a formula: 
          a(i)=i!=1*2*...*i

Instead, we could give the first value:
  a(0) = 1
and then say how to get the next value:
  a(i) = a(i-1) * i

This “stepping stone” description requires us to start 
at the first value and take a sequence of steps to 
reach the desired value.
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Same Sequence, Different Rule

By formula, we compute 5! this way:
  a(5) = 5! = 5*4*3*2*1 = 120.
By stepping stone, we compute:
  a(0) = 1
  a(1) = a(0) * 1 = 1
  a(2) = a(1) * 2 = 2
  a(3) = a(2) * 3 = 6
  a(4) = a(3) * 4 = 24
  a(5) = a(4) * 5 = 120
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Stepping Stone Advantages?

The stepping stone rule seems to require 
more multiplication to get 5!, but in this 
case, it’s exactly the same work.

And if we actually wanted to compute a list 
a(0) through a(5), the stepping stone 
method uses a total of 5 multiplications, 
while formulas would use 15.

Stepping stone seems to require setting up all 
those intermediate variables, but we’ll fix 
that.
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How NOT to Compute 5! in MATLAB
a0 = 1;
a1 = a0 * 1;
a2 = a1 * 2;
a3 = a2 * 3;
a4 = a3 * 4;
a5 = a4 * 5;
fprintf ( ‘  5! = %d\n’, a5 );

Too much work defining variables.  And if we pick a different 
factorial to compute, we have to write a new program.

Since  we are repeating commands, we want to use a FOR or 
WHILE statement, wrapped around just a few commands.
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A Strategy

To compute 5! requires 5 steps.
On step I, the new value is computed by 

multiplying the old value by I.
We can use a FOR loop, I = 1 : 5 or, in 

general, I = 1 : N.
Depending on what we need to remember, 

we can use ONE variable or TWO.
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Two Variable Stepping Stone Program

Strategy: A is the “new” value, and AOLD is 
the previous one.  On each step, we copy 
A into AOLD and compute the next one.

a = 1;
for i = 1 : n
  aold = a;
  a = aold * i;
end
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One Variable Stepping Stone Program

Strategy: Just update A immediately.

a = 1;
for i = 1 : n
  a = a * i;
end

Notice that we lose the ability to measure how big our 
step was.  If the sequence is suppose to converge, we 
would want to compare successive elements, and this 
would not be easy in the One Variable program.
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Bring First Value Inside Loop

It might be better to rewrite the loop so 
that the starting value is also set inside 
the loop.  It’s a little cleaner.  It 
corresponds better to how the rule is 
defined.  And, if we want to print each 
value, we only need one print statement, 
not two (because the first value is no 
longer outside the loop).
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Revised One Variable Stepping Stone 

The loop limits are 0:n, which explains the range of the sequence.  
Inside the loop, we have a nice presentation of the stepping stone rule.

for i = 0 : n

  if ( i == 0 )
    a = 1
  else
    a = a * i;
  end

  fprintf ( ‘ %d’, a );
end
fprintf ( ‘\n’ );
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factorial_formula.m

% factorial_formula.m
% Show how to compute a sequence of factorials, using a formula.
%
nmax = input ( 'Enter NMAX, highest factorial to compute: ' );

for n = 0 : nmax

  fact = 1;
  for i = 1 : n
    fact = fact * i;
  end

  fprintf ( ' %d', fact );

end

fprintf ( '\n' );
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factorial_stepping.m

% factorial_stepping.m
% Show how to compute a sequence of factorials, using stepping stones.
%
nmax = input ( 'Enter NMAX, highest factorial to compute: ' );

for n = 0 : nmax

  if ( n == 0 )      First step is special←
    fact = 1;
  else                 After that, use the “stepping stone” rule←

    fact = fact * n;
  end

  fprintf ( ' %d', fact );

end

fprintf ( '\n' );
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factorial_stepping2.m

% Show how to compute a sequence of factorials, using stepping stones,
% and keeping the previous value.
%
nmax = input ( 'Enter NMAX, highest factorial to compute: ' );

for n = 0 : nmax

  if ( n == 0 )
    factold = 0;                 Just make up a “previous” value on first step;←
    fact = 1;
  else
    factold = fact;            Save the previous value, perhaps for comparison.←
    fact = factold * n;
  end

  fprintf ( ' %d', fact );

end

fprintf ( '\n' );
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Stepping Stones in Computing

Stepping Stone sequences are common in 
computing.  

In most examples we will see, to compute a(n) 
only requires knowing one old value, a(n-1), 
although there is at least one famous exception 
we will talk about soon.

Describing a sequence using stepping stones takes 
us near the computational solution of 
differential equations, simulating the behavior 
of a quantity like temperature by computing a 
sequence of values.
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Stepping Stone Examples

FACT: a(0) is 1, and a(i) = a(i-1) * i;
TRI: a(0) is 0, and a(i) =a(i-1) + i;
EVEN: a(0) is 0, and a(i) = a(i-1) + 2;
POW2: a(0) is 1, and a(i) = a(i-1) * 2;
8CHOOSEI: a(0) is 1, and a(i) = a(i-1) * (8-i) / i;
NCHOOSE2: a(0) is 1, and a(i) = a(i-1)+i;
INT: a(0) is PRINCIPAL and a(i)=(1+RATE)*a(i-1);

Can we work out these sequences? 
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New Rule, Old Tasks

If we are using a stepping stone rule for 
a sequence, let’s make sure we can still:

* Print the first N entries;
* Plot the first N entries;
* Compute entries UNTIL some condition;
* Compute the MAX;



Insight Through 
Computing

 

Print a Stepping Stone Sequence
interest_sequence.m

rate = input ( ‘Enter the interest rate: ‘ );
year_end = input ( ‘Enter the final year: ‘ );

for year = 2017 : year_end
  if ( year == 2017 )
    amount = 1000.0;                          initialize inside loop←

  else
    amount = amount * ( 1.0 + rate );  stepping stone rule←

  end
  fprintf ( ‘%d  %.0f\n’, year, amount );
end
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Plot a Stepping Stone Sequence
interest_plot.m

rate = input ( ‘Enter the interest rate: ‘ );
year_end = input ( ‘Enter the final year: ‘ );

amount_list = [];                               initialize empty list←
for year = 2017 : year_end
  if ( year == 2017 )
    amount = 1000.0;                          initialize inside loop←
  else
    amount = amount * ( 1.0 + rate );  stepping stone rule←
  end
  fprintf ( ‘%d  %.0f\n’, year, amount );
  amount_list = [ amount_list, amount ];   update list←
end

plot ( 2017:year_end, amount_list );   list of years, list of amounts←
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Run Stepping Stone Sequence UNTIL
interest_until.m

rate = input ( ‘Enter the interest rate: ‘ );
year = 2017;;

while ( true )

  if ( year = 2017 )
    amount = 1000.0;
  else
    amount = amount * ( 1.0 + rate );  stepping stone rule←
  end

  if ( 5000 <= amount )
    break
  end

  year = year + 1;

end

fprintf ( ‘In %d, $%0.f exceeds $5000\n’, year, amount );



Insight Through 
Computing

 

Computing the MAX

So far, almost all our sequences consist of 
numbers that grow larger and larger, so that 
the last number computed is the largest.

This is not always the case; a sequence might 
oscillate up and down, and in that case, we might 
be interested in knowing the maximum value 
observed.

Remember, although we have computed N entries, 
we only see one or two values at a time, so when 
we are done, it’s too late to say “Just compute 
the max now!”
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The MAX of a Stepping Stone Sequence

for k = 0 : n

  if ( k == 0 )
    value = initial value;
    value_max = value;
  else
    value = STEPPING STONE FORMULA
    value_max = max ( value_max, value );
  end

end

fprintf ( ‘Maximum value observed = %d\n’, value_max );
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Maximum of Stepping Stone Sequence
nchoosek_max.m

n = input ( ‘Enter the value of N: ‘ );

for k = 0 : n

  if ( k == 0 )
    value = 1;
    value_max = value;
  else
    value = value * ( n + 1 – k ) / k;
    value_max = max ( value_max, value );
  end

end

fprintf ( ‘Maximum value observed = %d\n’, value_max );
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Mathematics Moment: N-Choose-K

N-Choose-K is how mathematicians describe the number 
of ways of choosing K distinct objects from a set of N.

MATLAB includes the command:
  value = nchoosek ( n, k );
N-Choose-K is only nonzero for 0 <= K <= N, so this set 

of numbers forms a sort of finite sequence.
Choosing 2 things from a set of 10 is the same as 

choosing 8 things, because you are really splitting the 
set into two pieces: chosen and unchosen.

This means the N-Choose-K sequence is symmetric.
By convention, N-Choose-K is 1 if K is 0.
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N-Choose-K

The formula for N-Choose-K:
  N-Choose-K = n! / ( k! * ( n-k )! )
assuming 0 <= K <= N, 0 otherwise.

4Choose2 = 4!/(2! * 2!) = 24/ (2 * 2) = 6
5Choose3 = 5!/(3! * 2!) = 120/(6 * 2) = 10
6Choose0 = 6!/(0! * 6!) = 720/(1*720) = 1
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N-Choose-K for N = 4

Computing the values of N-Choose-K when N = 4:

N-Choose-0 = 1
N-Choose-1 = 4
N-Choose-2 = 6
N-Choose-3 = 4
N-Choose-4 = 1

Or, as a single line: 1, 4, 6, 4, 1
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Formula for N-Choose-K

Compare 1, 4, 6, 4, 1 to the formula:
  N-Choose-K = n!/(k! * (n-k)!)
for N = 4, K = 0, 1, 2, 3, 4.

Can we verify these values?

When N = 5, can we compute the values 
of N-Choose-K for K = 0, 1, 2, 3, 4, 5?
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nchoosek_formula.m

n = input ( 'Enter the value of N: ' );
k = input ( 'Enter the value of K: ' );

value = factorial ( n ) / …
  ( factorial ( k ) * factorial ( n – k ) );

fprintf ( ' %d-Choose-%d = %d\n', n, k, 
value );
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Stepping Stone for N-Choose-K

Can we find a stepping stone rule for N-
Choose-K that explains 1,4,6,4,1?

K=0: the value is 1
K=1: multiply by N (remember, N = 4 ).
K=2: how does 4 become 6?  Try 

multiplication: 4 * 3/2 = 6.
K=3: 6 becomes 4?  Maybe  6*2/3 = 4;
K=4: 4 becomes 1?  Multiply by ¼.
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Looking for Pattern

1
4 = 1 * 4     = 1 * 4/1
6 = 4 * 3/2 = 6 * 3/2
4 = 6 * 2/3 = 6 * 2/3
1 = 4 * 1/ 4 = 4 * 1 /4

Looks like we multiply by 4/1, 3/2, 2/3 
1/4
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Does the Pattern Really Work?

Check it out on next line, N = 5:
1, 5, 10, 10, 5, 1

N=5,K=0                     1 (starting value)
N=5,K=1:    1 * 5/1 =   5
N=5,K=2:   5 * _/_ = 10
N=5,K=3:   _ * _/_ = 10
N=5,K=4:   _ * _/_ =   5
N=5,K=5:   _ * _/_ =   1 
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 N-Choose-K (stepping stone)

To compute N-Choose-K:
  Set value = 1;
  Multiply value by n+1-1 / 1;
  Multiply value by n+1-2 / 2;
  …
  Multiply value by n+1-k / k;
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nchoosek_stepping.m

n = input ( 'Enter the value of N: ' );
k = input ( 'Enter the value of K: ' );

for i = 0 : k

  if ( i == 0 )
    value = 1;
  else
    value = value * ( n + 1 - i ) / i;
  end

end

fprintf ( ' %d-Choose-%d = %d\n', n, k, value );
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Explaining the Steppingstone Pattern

Look at row 6:

1, 6, 15, 20, 15, 6, 1

15 is row N=6, column K=2, and 15 = 6!/(2! * 4!)
20 is row N=6, column K=3 and 20 = 6!/(3! * 3!)

Do you see how the formula for 15 becomes the 
formula for 20 if we...divide by 3 and multiply by 
4?  
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Our Stepping Stone Rule

So an N-Choose-K value can be computed 
by a complicated formula, but if we 
know A(K-1), the value for K-1, we can 
compute A(K) in a very simple way:

      A(K) = A(K-1) * (N+1-K)/K.
That’s the stepping stone rule we’ve been 

using, but now we know why it works.
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What Happens as We Vary N?

For any N, we can ask for the value of N-
Choose-K for K = 0, 1, 2, …, N, that is, for 
N+1 values.  

For each N, we can write these N+1 
numbers as a row.

Because the rows get longer with N, they 
form a triangle, known as Pascal’s triangle.

Thus, our 1,4,6,4,1 values are row 4 of this 
triangle.
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Pascal’s Triangle
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Ways to Compute Pascal’s Triangle

We can compute N-Choose-K, in row N, 
column K by:

a) cnk = nchoosek ( n, k );
b) cnk = n! / ( k! * (n-k)! )
=factorial(n)/(factorial(k)*factorial(n-k));
c) stepping stone formula, starting at 1 and 

multiplying by n/1, (n-1)/2, ...(n-k+1)/k.
d) add the two values in the previous row, 

just above the slot for N-Choose-K!
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Printing Pascal’s Triangle

Rows and Columns start with index 0.  In terms of N-Choose-K, N counts 
the row, and K the column:

                K=0   K=1   K=2   K=3  K=4

    N = 0:   0,0
    N = 1:   1,0    1,1
    N = 2:   2,0   2,1  2,2
    N = 3:   3,0   3,1  3,2  3,3
    N = 4:   4,0   4,1  4,2  4,3  4,4

To print this triangle, we must handle rows N = 0 : NMAX, and in row N, 
columns K = 0 : N.  We’ll need a pair of FOR loops, the outer one picks 
the row N, then the inner one runs through the columns indexed by K.  
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pascal_triangle.m

nmax = input ( ‘Enter maximum row to print: ‘ );

for n = 0 : nmax
  for k = 0 : n
     if ( k == 0 )
       value = 1;
     else
       value = value * ( n + 1 – k ) / k;
     end
     fprintf ( ‘ %3d’, value );
  end
  fprintf ( ‘\n’ );
end
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Mathematical Fact

The sum of the entries in row N of Pascal’s 
triangle is 2N.

Given a sequence that we are computing, 
how would we go about computing the sum 
of all the entries we have seen so far?

Let’s figure this out by verifying the Math 
fact!
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pascal_rowsum.m

n = input ( ‘Enter row to check: ‘ );

sum = 0;

for k = 0 : n

   if ( k == 0 )
     value = 1;
   else
     value = value * ( n + 1 – k ) / k;
   end

   sum = sum + value;

end

fprintf ( ‘Row %d sums to %d, and we expected %d\n, n, sum, 2^n’ );
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Pascal and Coin Flipping

Row N of Pascal’s triangle can be interpreted as the 
number of ways of getting K heads in N tosses of a 
fair coin.

Row 7 tells us there are 7 ways of getting 1 head in 7 
tosses, but 35 ways of getting 3 heads.  That means 3 
heads are 5 times as likely as 1 head, when carrying 
out 7 tosses. 

MATLAB has a bar() command that can display the 
resulting values the values in a row of the matrix, 
giving us a sense for how these values vary.
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pascal_rowbar.m

n = input ( ‘Enter row to plot: ‘ );

value_list = [];

for k = 0 : n

   if ( k == 0 )
     value = 1;
   else
     value = value * ( n + 1 – k ) / k;
   end

   value_list = [ value_list, value ];

end

bar ( 0:n, value_list )                           we can add grid, title, xlabel, ylabel...←
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Probabilities

Row N of Pascal’s triangle gives us the 
number of ways a fair coin, tossed N 
times, will result in K heads.

The total number of ways is 2N.
So if we are interested in reporting the 

probability of K heads, we just divide all 
the entries in row N by 2N.

This time, the Y axis of the bar plot will 
represent actual probability. 
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Let’s Consider Exercise Questions

1) What is the next row of the triangle?
2) How does this triangle tell you how to write out (x+y)^4?
3) In 4 coin tosses, how many ways can I get 2 Heads, 2 Tails?
4) What is the probability of 2 Heads, and 2 Tails, in 4 coin 

tosses?
5) How many ways can I choose 5 things from a set of 7?
6) Is there a formula for the number in row N, column K?
7) Is there a way to write out the N-th row of this triangle, 

without any other information?
8) If a 256 steel balls drop down through a pyramid of nails 

involving 9 rows, what pattern are they likely to form? 
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To Learn More:

Martin Gardner, “The multiple charms of 
Pascal’s triangle”, Scientific American, 
December, 1966.

“The Galton board”, 
https://www.youtube.com/watch?
v=6YDHBFVIvIs
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Homework #3
Due by Midnight, Friday, September 22

 hw012: rewrite a positive number in scientific 
notation, using two WHILE statements.

 
hw027: estimate an infinite alternating 

decreasing infinite series, using a WHILE 
statement.

hw028: pay your grocery bill at an automatic 
checkout, using WHILE.
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Homework #4
Due by Midnight, Friday, October 6

 hw029: approximate the golden ratio by 
summing part of an infinite series.

 
hw030: how long must a penny fall before 

it reaches the center of the earth?

hw032: when will a typical child weight 
1000 pounds, according to Theron?
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Exam

We will have an in-class exam on 
Thursday, September 28th.

The exam counts as 15% of your grade.
It will be a written exam, involving short 

answers or short MATLAB scripts.
A practice exam will be available by 

Tuesday; I may post a copy in Canvas 
before then, in the “files” subdirectory 
named 09_28. 
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