
Finite Element Treatment of the Navier Stokes Equations,

Part IV, Solving the discretized Navier Stokes Equations

John Burkardt
https://people.sc.fsu.edu/∼jburkardt/fem 2005/fem ns4.pdf

16 August 2021

1

1 Introduction

In the previous discussion, we considered the continuous Stokes equations, developed the weak form, con-
structed a set of basis functions using the finite element method, and arrived at a set of linear discretized
equations whose solution would give the finite element approximation to the Stokes equations. Solving the
system of linear equations is a relatively straightforward matter.

This laid the groundwork for the current discussion, in which we will rapidly go through the same steps for
the continuous Navier Stokes equations. However, the result will be a set of nonlinear discretized equations.
The solution of a set of nonlinear equations is significantly more complicated.

In particular, Newton’s method needs some form of derivative operator. In order to understand how to
compute and use the appropriate derivative operator for our problem, we will go back to the continuous
Navier Stokes equations and derive the form of Newton’s method, and the associated derivative operator.
We will then be able to explain what the corresponding derivative operator will be in the discrete case, and
apply Newton’s method to the nonlinear discretized equations, to arrive at our solution.

We begin by rapidly marching through the steps required to reach the discretized system.

2 Evaluating The Strong Navier-Stokes Equations

Now that we have some idea of the geometry of our region, and how the basis functions are generated, we
are ready to use these ideas to treat the Navier-Stokes equations. We begin with the classical form of the
equation.

Suppose we are interested in the particular form of the Navier Stokes equations represented by time-
independent 2D incompressible flow, as discussed earlier. Let us suppose that we have an arbitrary pair of
functions (v, p). We say this pair of functions solves (our version of) the Navier Stokes Equations in the
strong sense, or is a strong solution if

−∆v(x, y) +R (v(x, y) · ∇)v(x, y) +∇p(x, y) = 0 (1)

∇v(x, y) = 0 ∀(x, y) ∈ Ω (2)

or, in the more abstract and general form:

−∆v +R (v · ∇)v +∇p = 0 (3)

∇v = 0 (4)

Now a strong solution is really what we would usually just call a solution; we only mention the term
strong solution to distinguish it from the kind of solutions we’re actually going to be computing, which are
termed “weak solutions”.

3 The Weak Form of the Navier-Stokes Equations

If a pair of functions is a strong solution to the Navier Stokes equations, then it satisfies those equations
pointwise. Certainly, this pair will still be a solution if we multiply the Navier Stokes equations by any
functions we like. In particular, we could multiply the momentum equation by any velocity basis function
ψi(x, y) and the continuity equation by any pressure basis function φj(x, y). A strong solution will surely
satisfy:

(−∆v(x, y) +R(v(x, y) · ∇)v(x, y) +∇p(x, y))ψi(x, y) = 0 (5)

∇v(x, y)φj(x, y) = 0 (6)

∀(x, y) ∈ Ω (7)

2

We could take a step further and integrate these equations over the domain. For any strong solution, it
must be the case that:∫

Ω

(−∆v(x, y) +R(v(x, y) · ∇)v(x, y) +∇p(x, y))ψi(x, y)dΩ = 0 (8)∫
Ω

∇v(x, y)φj(x, y)dΩ = 0 (9)

The more general form of these weak equations is:∫
Ω

(−∆v +R(v · ∇)v +∇p)ψi dΩ = 0 (10)∫
Ω

∇v φj dΩ = 0 (11)

4 Lowering the Order using Integration by Parts

The very form of the Navier Stokes equations seems to require that the velocity function be twice continuously
differentiable. Since observable fluid flows don’t necessarily seem so smooth, and mathematical flows can be
constructed that do not have this property, it is desirable to see if we can modify the equations in some way
so that we have a looser differentiability requiremement on the solution.

Consider, then, the following:
d

dx
(
dv

dx
ψi) =

d2v

dx2
ψi +

dv

dx

dψi
dx

(12)

If we integrate and rearrange, we have∫
Ω

−d
2v

dx2
ψidΩ = − d

dx
(
dv

dx
ψi)|∂Ω +

∫
Ω

dv

dx

dψi
dx

dΩ (13)

Now if we suppose ψi is a basis function whose associated node is not on the boundary, then ψi is
identically zero on the boundary. Therefore, the boundary term disappears, and we have∫

Ω

−d
2v

dx2
ψidΩ =

∫
Ω

dv

dx

dψi
dx

dΩ (14)

Repeating this process for the y derivative, we then have∫
Ω

−∆vψidΩ =

∫
Ω

dv

dx

dψi
dx

+
dv

dy

dψi
dy

dΩ (15)

and hence we can rewrite the momentum equation as∫
Ω

∇v · ∇ψi + (R(v · ∇)v +∇p)ψidΩ = 0 (16)∫
Ω

∇vφjdΩ = 0 (17)

Why is this an accomplishment? Well, we have lowered the order of differention on v. That means our
weak form of the equation now only requires that v be a C1(Ω) function. This allows us to consider a larger
class of solutions than the classical strong form of the equation would require.

We have done this at the cost of assuming that the basis functions are differentiable, but in fact, they
are polynomials, so that’s not a problem at all.

This, then, is our weak form of the Navier Stokes equations. Notice that, up to this point, we have not
explicitly used anything from finite elements. The appearance of the function ψi(x, y) should suggest what
is on our minds, but so far, everything we have said is true for arbitrary sufficiently smooth functions v, p,
ψi and φi.

3

5 The Discretized Weak Navier Stokes Equations

Exactly as in the case of the weak Stokes equations, we construct a set of basis functions for the discretized
solution space, and seek solutions of the weak Navier Stokes equations which can be represented in the form:

vh(x, y) =

Nu∑
j=1

vvalj ψj(x, y)

ph(x, y) =

Np∑
j=1

pvalj φj(x, y)

Thus, our discretized weak system of equations is:∫
Ω

∇vh · ∇ψi + (R(vh · ∇)vh +∇ph) ψi dΩ = 0 (18)∫
Ω

∇vh φi dΩ = 0

It may help to write these equations out in some detail, that is, listing the individual components of the
velocity, and spelling out the differential operators. This is the set of equations (plus unspecified linearized
boundary conditions) that will constitute the Newton function H(X) for which we will be seeking a zero:∫

Ω

∂uh

∂x

∂ψi
∂x

+
∂uh

∂y

∂ψi
∂y

+ (R (uh
∂uh

∂x
+ vh

∂uh

∂y
) +

∂ph

∂x
)ψi dΩ = 0 (19)∫

Ω

∂vh

∂x

∂ψi
∂x

+
∂vh

∂y

∂ψi
∂y

+ (R (uh
∂vh

∂x
+ vh

∂vh

∂y
) +

∂ph

∂y
)ψi dΩ = 0 (20)∫

Ω

(
∂uh

∂x
+
∂vh

∂y
)φi dΩ = 0 (21)

6 Newton’s Method for the Continuous Navier Stokes Equations

Newton’s method for solving a system of nonlinear equations H(X) = 0 assumes that we have an approximate
solution X0 and a derivative operator H ′(X) which allows us to approximate the behavior of the function
H around any point X0 as a constant plus linear plus nonlinear terms:

H(X) = H(X0) +H ′(X0) (X −X0) +O(‖X −X0‖2). (22)

You may be familiar with Newton’s method in the case where X and the function H(X) are scalar-valued.
The method can be described formally in the same way for the cases where X and H(X) are vectors or even
functions. However, it is important in these more complicated cases to understand what kind of object H ′

will be, and how it can be computed.
If X and H(X) are scalars, then of course H ′(X) is simply the usual derivative function. If X and

H(X) are vectors, then H ′(X) is the Jacobian matrix. But in the case of current interest to us, where we
want to consider the Navier Stokes equations in their original, continuous setting, then X is a collection of
functions (a vector-valued velocity function (u, v)(x, y) and a scalar-valued pressure function p(x, y)), H(X)
is the Navier-Stokes equations plus boundary conditions evaluated with those functions, and H ′ must be
some kind of linear operator. In this case, the job of H ′ is to estimate the value of the residual of the Navier
Stokes equation at any new flow field X, based entirely on the value of the current flow field X0 and its
residual H(X0). If this is a new or unclear concept, then it is best not to worry about it now; continue with
the discussion, which may help to clarify the role of H ′.

As it stands, Equation (22) is true, but useless as far as computation goes! Let us simplify the equation
by dropping the nonlinear terms, in which case we have the true, useless, but simpler equation:

4

H(X) ≈ H(X0) +H ′(X0) (X −X0). (23)

As long as H ′(X0) is not singular, then in some neighborhood, this linear approximation is actually fairly
good. Therefore, we might want to consider a local linear approximation h(X) to H(X), which we define by
replacing the approximation sign by an equality:

h(X) = H(X0) +H ′(X0) (X −X0). (24)

Equations are so much more useful than approximations! We know this model function h(X) is only
valid in a small neighborhood of X0, but since h(X) is a linear function, we can analyze it completely. One
of the most interesting things about a function is to find where it is zero. A formula for the root x∗ for which
h(x∗) = 0 is instantly obtainable:

x∗ = X0 − (H ′(X0))−1 H(X0). (25)

Of course, x∗ is just a root of h(X); but if h(X) is a good model of H(X), then it is reasonable to assume
that x∗ is also a good estimate of the root X∗ for which H(X∗) = 0.

We are actually going to be generating a sequence of estimates for the root by using this idea of a linear
model. Although generated by the linear models, we hope that this sequence tends to converge to the root
X∗ of the nonlinear equation, and so we will label this sequence using a superscripted capital X.

Thus, we regard our initial estimated value X0 as the first element of the sequence, and we refere to it
as X0. The next value in the sequence is obtained from Equation (25), and is denoted by X1. If X1 is a
better approximation to the root than X0 was, then it is presumably a good idea to reconstruct the model
linear function base at X1 and solve for the root of this new linear equation. But that simply means that
on our next step, we want to evaluate the right hand side of Equation (25) at X1 now.

In many cases, this procedure, the Newton iteration, will produce a sequence of rapidly improving esti-
mates for the root of the original nonlinear function. The Newton iteration consists of repeatedly evaluating
the right hand side of Equation (25) and using the result as the new estimate of the root:

Xk+1 = Xk − (H ′(Xk))−1 H(Xk). (26)

Note that we can also write this equation in the equivalent implicit form:

H ′(Xk) (Xk+1 −Xk) = −H(Xk). (27)

in which case, we have to solve some sort of linear algebraic equation or linear functional equation, for the
Newton increment

∆Xk ≡ Xk+1 −Xk. (28)

We will in fact generally want to think of this implicit equation in the form:

H ′(Xk) ∆Xk = −H(Xk). (29)

Depending on the situation, we may prefer the explicit or implicit form of the Newton iteration, and we
may want to talk in terms of the next iterate Xk+1 or the increment ∆Xk.

To apply Newton’s method to our flow problem, we need a way of defining the derivative operator H ′ of
the function H. This is a simple task in the typical discretized case, when both H and its argument X are
vectors of real numbers. But we need to be able to define H ′ in the continuous case as well, where H and
X are functions, or even sets of functions (horizontal and vertical velocity and the pressure, for instance).
In such a case, the simple vector calculus definitions of the derivative as a Jacobian matrix are not useful.

To see what is going on, it really helps to go back to the definition of the derivative as the limit of
difference quotients. Let us start with any evaluation point X0. We pick an arbitrary increment function
∆X. We now want to compare the value of H at X0 to its values along the one dimensional family of points
defined by X0 + ε∆X.

5

This allows us to define a difference quotient whose divisor is a real number. If the resulting expression
has a limit, then that limit is termed the Gateaux derivative of H in the direction ∆X:

H ′G(X0)(∆(X)) ≡ lim
ε→0

H(X0 + ε∆X)−H(X0)

ε
. (30)

Of course, from the definition, the Gateaux derivative only gives information along a particular direction;
if the Gateaux derivative exists at X0 for a particular increment direction ∆X, then it may or may not exist
for another increment direction; and if it exists for two distinct increment directions from X0, there is no
guarantee that the two Gateaux derivatives are equal! However, the definition of the Gateaux derivative
should start to give you a picture of what it might mean when we speak of the derivative of a function whose
argument is itself a function.

In most interesting cases, the Gateaux derivative exists, and is independent of the increment direction,
and is continuous in some neighborhood of the point of interest X0. In this case, it graduates to being
a Frechet derivative. Although Frechet derivatives are really just the same kind of difference quotient as
Gateaux derivatives, their description might seem different, since they are usually described in terms of
differences between the value of H at X0 and a second nearby point X1:

lim
‖X1−X0‖→0

‖H(X1)−H(X0)−H ′F (X0)(X1 −X0)‖
‖X1 −X0‖

= 0. (31)

For our work, the typical argument X0 will be the triple of state functions (u, v, p); the nonlinear function
H will be the Navier Stokes equations, which we will write F (u, v, p) = f , and the boundary conditions,
which we will write G(u, v, p) = g. We will assume that the function H is always Frechet differentiable.
Newton’s method requires a “suitable” starting estimate X = (u, v, p) of the solution, which can be any
functions of (x, y) defined over Ω, and which need not satisfy the boundary conditions.

We may then symbolize the unknowns as:

X ≡

 u
v
p

 (32)

and the system of nonlinear equations as:

H(X) ≡
(
F (u, v, p)− f
G(u, v, p)− g

)
. (33)

To work out the linearization operator H ′(X0)(∆X) for the Navier Stokes equations, you should simply
carry out the usual difference quotient estimation using a Gateaux derivative approach. We will write
X0 = (u0, v0, p0) for the flow values, and ∆X = (∆u,∆v,∆p) for the increment direction. Now, write down
the Navier Stokes equations for the functions (u0, v0, p0), and then write them down again for (u0 +ε∆u, v0 +
ε∆v, p0 + ε∆p). (You can probably save some time if you assume you know that will happen to the simple
linear terms in the equations.) Subtract the two equations, divide by ε, and then let ε go to zero to get the
value of H ′(X0)(∆X).

The results of this linearization are known as the Oseen equations. These are a sort of set of flow
equations for the increment functions. Note, in particular, that the velocity increment functions satisfy the
same continuity equations as the velocity functions do:

−(
∂2∆u

∂x2
+
∂2∆u

∂y2
) +R (∆u

∂u0

∂x
+ u0

∂∆u

∂x
+ ∆v

∂u0

∂y
+ v0

∂∆u

∂y
) +

∂∆p

∂x
= 0 (34)

−(
∂2∆v

∂x2
+
∂2∆v

∂y2
) +R (∆u

∂v0

∂x
+ u0

∂∆v

∂x
+ ∆v

∂v0

∂y
+ v0

∂∆v

∂y
) +

∂∆p

∂y
= 0 (35)

∂∆u

∂x
+
∂∆v

∂y
= 0 (36)

6

You should study these equations, and notice the similarities and differences compared to the Navier
Stokes equations. Keep in mind the distinction between the flow quantities and the increment quantities.
The flow field quantities are fixed, known, given functions; the increment quantities are freely varying, small,
unknown increment functions; they represent small changes to an existing flow.

Of course, for a given problem, we also have to differentiate whatever side conditions and boundary
conditions we have imposed. Formally, the linearized boundary conditions will be part of our operator H ′,
and will have the following form:

G′(u0, v0, p0) (∆u,∆v,∆p) = Gu(u0, v0, p0)∆u+Gv(u0, v0, p0)∆v +Gp(u0, v0, p0)∆p = 0. (37)

We have had to leave the boundary conditions in this fairly general form, since we wish to be free to choose
a variety of different conditions. Usually, the actual boundary equations being employed will be so simple
that their linearization will be no challenge at all.

In fact, for our current problem, recall that we assumed the boundary conditions were constant in the
unknowns u, v, and p. This implies that the linearized boundary conditions are formally identical to the
original boundary conditions on the left hand side, but with a homogeneous right hand side.

For instance, an original boundary condition u(x, 0) = x2 (which is a constant function, in terms of u, v
and p) would, after differentiation and evaluation at the increment (∆u,∆v,∆p), become ∆u(x, 0) = 0. The
fact that the boundary conditions for the linearized problem don’t change much from those for the nonlinear
problem will be helpful later.

7 Evaluating a Flow Field Variable

It is going to be convenient to be able to request the value of the state variables and their derivatives at any
point in the region. Logically, this is a simple request, but the details of the process can be a bit involved.
Thus, it is best to encapsulate this information as a function. We will find this routine useful when we need
to evaluate the residual error associated with an approximate solution of the Navier Stokes equation, but
once it is written, it will also be very helpful in plotting, computing tables, and writing out files.

This version of the routine is to be used to evaluate the horizontal or vertical velocity at a point in a given
6-node element. We are given the coordinates of the nodes, the corresponding finite element coefficients, and
a number of points within the element at which the (horizontal or vertical) velocity is to be evaluated.

A similar routine can be written for the pressure, but using the three-node element.

function [u, dudx, dudy] = flowfield_value_t6 (t6, cu, n, xy);

%% FLOWFIELD_VALUE_T6 evaluates a quantity associated with a quadratic triangle.

%

% Modified:

%

% 08 July 2005

%

% Author:

%

% John Burkardt

%

% Parameters:

%

% Input, real T3(2,6), the coordinates of the triangle.

%

% Input, real CU(6), the coefficients.

%

7

% Input, integer N, the number of evaluation points.

%

% Input, real XY(2,N), the coordinates of the evaluation points.

%

% Output, real U(N), DUDX(N), DUDY(N), the value of the pressure and its

% derivatives at the evaluation points.

%

[b, dbdx, dbdy] = basis_t6 (t6, n, xy);

u(1:n) = cu(1:6) * b (1:6,1:n);

dudx(1:n) = cu(1:6) * dbdx(1:6,1:n);

dudy(1:n) = cu(1:6) * dbdx(1:6,1:n);

8 Code to Assemble the Navier Stokes Residual

A Newton iteration strives to find a zero of a function f(x). The function f(x) is often called the residual
function. In order to apply Newton’s method, the user must write a routine that evaluates the residual
function for a given argument x. We are working with finite elements; therefore, we may be more comfortable
thinking of our unknown as being the vector c of finite element coefficients.

In some ways, this code is similar to the code used to assemble the Stokes equations. However, the
Stokes equations are linear, and the assembly routine there was required to produce the matrix A for which
A · c = rhs and therefore, the residual for the Stokes equations would be computed as f = A · c− rhs

Since the Stokes equations are linear, we don’t actually evaluate the state functions directly, but work
with the coefficients c. For the Navier Stokes equations, we need to use the coefficients c to evaluate the
state variables u, v, and p, and their derivatives, in order to evaluate the more complicated residual function.

Despite the extra complications, you should still be able to go to the final lines of this function, and identify
the weak form of the momentum equations and the continuity equation, which constitute the residual!

The following function demonstrates how one might compute the appropriate residual function for the
Navier Stokes equations.

function r = residual_navier_stokes (node_num, node_xy, triangle_num, ...

triangle_node, quad_num, node_u_variable, node_v_variable, ...

node_p_variable, variable_num, reynolds, c)

%% RESIDUAL_NAVIER_STOKES evaluates the Navier Stokes residual.

%

% Discussion:

%

% The residual terms due to boundary conditions must be applied separately.

%

% The Navier Stokes equations in weak form are:

%

% Integral ((dBdx(I) * dUdx + dBdy(I) * dUdy)

% + B(I) * (R * (U * dUdx + V * dUdy) + dPdx - U_RHS)) = 0

%

% Integral ((dBdx(I) * dVdx + dBdy(I) * dVdy)

% + B(I) * (R * (U * dVdx + V * dVdy) + dPdy - V_RHS)) = 0

%

% Integral (Q(I) * (dUdx + dVdy - P_RHS)) = 0

%

8

% Modified:

%

% 19 August 2005

%

% Author:

%

% John Burkardt

%

% Parameters:

%

% Input, integer NODE_NUM, the number of nodes.

%

% Input, real NODE_XY(2,NODE_NUM), the coordinates of the nodes.

%

% Input, integer TRIANGLE_NUM, the number of triangles.

%

% Input, integer TRIANGLE_NODE(6,TRIANGLE_NUM), the nodes of each triangle.

%

% Input, integer QUAD_NUM, the order of the quadrature rule.

%

% Input, integer NODE_P_VARIABLE(NODE_NUM),

% is the index of the pressure variable associated with the node,

% or -1 if there is no associated pressure variable.

%

% Input, integer NODE_U_VARIABLE(NODE_NUM),

% is the index of the horizontal velocity variable associated with the node.

%

% Input, integer NODE_V_VARIABLE(NODE_NUM),

% is the index of the vertical velocity variable associated with the node.

%

% Input, integer VARIABLE_NUM, the number of unknowns.

%

% Input, real REYNOLDS, the value of the Reynolds number.

%

% Input, real C(VARIABLE_NUM), the finite element coefficients of an

% approximate solution of the Navier Stokes equations.

%

% Output, real R(VARIABLE_NUM), the Navier Stokes residual.

%

%

% Initialize the residual to 0.

%

r(1:variable_num) = 0.0;

%

% Get the quadrature weights and nodes.

%

[quad_w, quad_xy] = quad_rule (quad_num);

%

% Consider all quantities associated with a given TRIANGLE.

%

9

for triangle = 1 : triangle_num

%

% Make a copy of the triangle.

%

t3(1:2,1:3) = node_xy(1:2,triangle_node(1:3,triangle));

t6(1:2,1:6) = node_xy(1:2,triangle_node(1:6,triangle));

%

% Map the quadrature points QUAD_XY to points XY in the physical triangle.

%

xy(1:2,1:quad_num) = reference_to_physical_t3 (t3, quad_num, quad_xy);

w(1:quad_num) = quad_w(1:quad_num) * triangle_area (t3);

%

% Evaluate the basis functions at the quadrature points.

%

[b, dbdx, dbdy] = basis_t6 (t6, quad_num, xy);

[q, dqdx, dqdy] = basis_t3 (t3, quad_num, xy);

%

% Extract the indices of the finite element coefficients for this triangle.

%

iu(1:6) = node_u_variable(triangle_node(1:6,triangle));

iv(1:6) = node_v_variable(triangle_node(1:6,triangle));

ip(1:3) = node_p_variable(triangle_node(1:3,triangle));

%

% Extract the finite element coefficients for this triangle.

%

cu(1:6) = c(iu(1:6));

cv(1:6) = c(iv(1:6));

cp(1:3) = c(ip(1:3));

%

% Evaluate the flowfield at each quadrature point.

%

u (1:quad_num) = cu(1:6) * b (1:6,1:quad_num);

dudx(1:quad_num) = cu(1:6) * dbdx(1:6,1:quad_num);

dudy(1:quad_num) = cu(1:6) * dbdx(1:6,1:quad_num);

v (1:quad_num) = cv(1:6) * b (1:6,1:quad_num);

dvdx(1:quad_num) = cv(1:6) * dbdx(1:6,1:quad_num);

dvdy(1:quad_num) = cv(1:6) * dbdx(1:6,1:quad_num);

p (1:quad_num) = cp(1:3) * q (1:3,1:quad_num);

dpdx(1:quad_num) = cp(1:3) * dqdx(1:3,1:quad_num);

dpdy(1:quad_num) = cp(1:3) * dqdx(1:3,1:quad_num);

%

% Evaluate the right hand side at each quadrature point.

%

[u_rhs, v_rhs, p_rhs] = rhs (quad_num, xy);

%

% Consider the contribution to the integrals from the QUAD-th quadrature point.

%

for quad = 1 : quad_num

10

for i = 1 : 6

r(iu(i)) = r(iu(i)) + w(quad) * (...

(dbdx(i,quad) * dudx(quad) + dbdy(i,quad) * dudy(quad)) ...

+ b(i,quad) * (...

reynolds * (u(quad) * dudx(quad) + v(quad) * dudy(quad)) ...

+ dpdx(quad) - u_rhs(quad)));

r(iv(i)) = r(iv(i)) + w(quad) * (...

(dbdx(i,quad) * dvdx(quad) + dbdy(i,quad) * dvdy(quad)) ...

+ b(i,quad) * (...

reynolds * (u(quad) * dvdx(quad) + v(quad) * dvdy(quad)) ...

+ dpdy(quad) - v_rhs(quad)));

end

for i = 1 : 3

r(ip(i)) = r(ip(i)) + w(quad) * q(i,quad) * (...

dudx(quad) + dvdy(quad) - p_rhs(quad));

end

end

end

9 Newton’s Method for the Discretized Weak Navier Stokes Equa-
tions

We assume that by now, you can fill in the steps that are necessary to transform the continuous Oseen
equations to a discretized weak form, including multiplication by a test function, integration over the region,
and integration by parts.

The resulting set of equations (plus unspecified linearized boundary conditions) will constitute the linear
system that must be repeatedly solved for the increments (∆u,∆v,∆p) that allow us to update our estimate
(u0, v0, p0) for the solution of the discretized weak Navier-Stokes equations:∫

Ω

∂∆u

∂x

∂ψi
∂x

+
∂∆u

∂y

∂ψi
∂y

+ (R (∆u
∂u0

∂x
+ u0 ∂∆u

∂x
+ ∆v

∂u0

∂y
+ v0 ∂∆u

∂y
) +

∂∆p

∂x
)ψi dΩ = 0 (38)∫

Ω

∂∆v

∂x

∂ψi
∂x

+
∂∆v

∂y

∂ψi
∂y

+ (R (∆u
∂v0

∂x
+ u0 ∂∆v

∂x
+ ∆v

∂v0

∂y
+ v0 ∂∆v

∂y
) +

∂∆p

∂y
)ψi dΩ = 0 (39)∫

Ω

(
∂∆u

∂x
+
∂∆v

∂y
)φi dΩ = 0 (40)

It’s easy to become confused by all the details, so let’s recall what is happening here. We are describing
what has to happen during one step of the Newton iteration. So we assume we have an initial estimate for
the solution, (u0, v0, p0), or, in general, the current k-th estimate (uk, vk, pk). We set up the above linear
system to get the increments or corrections, (∆u,∆v,∆p), in order to arrive at an improved estimate

(uk+1, vk+1, pk+1) = (uk, vk, pk) + (∆u,∆v,∆p) (41)

11

10 Code for the Jacobian Matrix

The Jacobian is computed by differentiating each component of the residual vector with respect to each
unknown. In this case, the unknowns are the finite element coefficients; differentiation of a term like
dudx(quad) by the coefficient associated with the horizontal velocity coefficient associated with basis node
j results in a differentiated term of dbdx(j,quad), for instance.

You should be able to derive the following Jacobian routine by “differentiating” the residual routine line
by line!

function a = jacobian_navier_stokes (node_num, node_xy, triangle_num, ...

triangle_node, quad_num, node_u_variable, node_v_variable, ...

node_p_variable, variable_num, reynolds, c)

%% JACOBIAN_NAVIER_STOKES evaluates the Navier Stokes Jacobian.

%

% Discussion:

%

% The residual terms due to boundary conditions must be applied separately.

%

% The Navier Stokes equations in weak form are:

%

% Integral ((dBdx(I) * dUdx + dBdy(I) * dUdy)

% + B(I) * (R * (U * dUdx + V * dUdy) + dPdx - U_RHS)) = 0

%

% Integral ((dBdx(I) * dVdx + dBdy(I) * dVdy)

% + B(I) * (R * (U * dVdx + V * dVdy) + dPdy - V_RHS)) = 0

%

% Integral (Q(I) * (dUdx + dVdy - P_RHS)) = 0

%

% Modified:

%

% 19 August 2005

%

% Author:

%

% John Burkardt

%

% Input:

%

% integer NODE_NUM, the number of nodes.

%

% real NODE_XY(2,NODE_NUM), the coordinates of the nodes.

%

% integer TRIANGLE_NUM, the number of triangles.

%

% integer TRIANGLE_NODE(6,TRIANGLE_NUM), the nodes of each triangle.

%

% integer QUAD_NUM, the order of the quadrature rule.

%

% integer NODE_P_VARIABLE(NODE_NUM),

% is the index of the pressure variable associated with the node,

% or -1 if there is no associated pressure variable.

12

%

% integer NODE_U_VARIABLE(NODE_NUM),

% is the index of the horizontal velocity variable associated with the node.

%

% integer NODE_V_VARIABLE(NODE_NUM),

% is the index of the vertical velocity variable associated with the node.

%

% integer VARIABLE_NUM, the number of unknowns.

%

% real REYNOLDS, the value of the Reynolds number.

%

% real C(VARIABLE_NUM), the finite element coefficients of an

% approximate solution of the Navier Stokes equations.

%

% Output:

%

% real A(VARIABLE_NUM,VARIABLE_NUM), the Jacobian.

%

%

% Initialize the Jacobian to 0.

%

a(1:variable_num,1:variable_num) = 0.0;

%

% Get the quadrature weights and nodes.

%

[quad_w, quad_xy] = quad_rule (quad_num);

%

% Consider all quantities associated with a given TRIANGLE.

%

for triangle = 1 : triangle_num

%

% Make a copy of the triangle.

%

t3(1:2,1:3) = node_xy(1:2,triangle_node(1:3,triangle));

t6(1:2,1:6) = node_xy(1:2,triangle_node(1:6,triangle));

%

% Map the quadrature points QUAD_XY to points XY in the physical triangle.

%

xy(1:2,1:quad_num) = reference_to_physical_t3 (t3, quad_num, quad_xy);

w(1:quad_num) = quad_w(1:quad_num) * triangle_area (t3);

%

% Evaluate the basis functions at the quadrature points.

%

[b, dbdx, dbdy] = basis_t6 (t6, quad_num, xy);

[q, dqdx, dqdy] = basis_t3 (t3, quad_num, xy);

%

% Extract the indices of the finite element coefficients for this triangle.

%

iu(1:6) = node_u_variable(triangle_node(1:6,triangle));

13

iv(1:6) = node_v_variable(triangle_node(1:6,triangle));

ip(1:3) = node_p_variable(triangle_node(1:3,triangle));

%

% Extract the finite element coefficients for this triangle.

%

cu(1:6) = c(iu(1:6));

cv(1:6) = c(iv(1:6));

cp(1:3) = c(ip(1:3));

%

% Evaluate the flowfield at each quadrature point.

%

u (1:quad_num) = cu(1:6) * b (1:6,1:quad_num);

dudx(1:quad_num) = cu(1:6) * dbdx(1:6,1:quad_num);

dudy(1:quad_num) = cu(1:6) * dbdx(1:6,1:quad_num);

v (1:quad_num) = cv(1:6) * b (1:6,1:quad_num);

dvdx(1:quad_num) = cv(1:6) * dbdx(1:6,1:quad_num);

dvdy(1:quad_num) = cv(1:6) * dbdx(1:6,1:quad_num);

p (1:quad_num) = cp(1:3) * q (1:3,1:quad_num);

dpdx(1:quad_num) = cp(1:3) * dqdx(1:3,1:quad_num);

dpdy(1:quad_num) = cp(1:3) * dqdx(1:3,1:quad_num);

%

% Evaluate the right hand side at each quadrature point.

%

[u_rhs, v_rhs, p_rhs] = rhs (quad_num, xy);

%

% Consider the contribution to the integrals from the QUAD-th quadrature point.

%

for quad = 1 : quad_num

%

% Derivatives of all 6 momentum equations with respect to all 6 U and V

% coefficients. Only here do we have nonlinear terms.

%

for i = 1 : 6

for j = 1 : 6

a(iu(i),iu(j)) = a(iu(i),iu(j)) + w(quad) * (...

(dbdx(i,quad) * dbdx(j,quad) ...

+ dbdy(i,quad) * dbdy(j,quad)) ...

+ b(i,quad) * reynolds * (...

b(j,quad) * dudx(quad) + u(quad) * dbdx(j,quad) ...

+ v(quad) * dbdy(j,quad)));

a(iu(i),iv(j)) = a(iu(i),iv(j)) + w(quad) * ...

reynolds * b(i,quad) * b(j,quad) * dudy(quad);

a(iv(i),iu(j)) = a(iv(i).iu(j)) + w(quad) * ...

reynolds * b(i,quad) * b(j,quad) * dvdx(quad);

a(iv(i),iv(j)) = a(iv(i),iv(j)) + w(quad) * (...

14

(dbdx(i,quad) * dbdx(j,quad) ...

+ dbdy(i,quad) * dbdy(j,quad)) ...

+ b(i,quad) * reynolds * (...

u(quad) * dbdx(j,quad) + b(j,quad) * dvdy(quad) ...

+ v(quad) * dbdy(j,quad)));

end

end

%

% Derivatives of the six momentum equations with respect to the three

% pressure coefficients.

%

for i = 1 : 6

for j = 1 : 3

a(iu(i),ip(j)) = a(iu(i),ip(j)) + w(quad) * b(i,quad) * dqdx(j,quad);

a(iv(i),ip(j)) = a(iv(i),ip(j)) + w(quad) * b(i,quad) * dqdy(j,quad);

end

end

%

% Derivatives of the three continuity equations with respect to the

% six velocity coefficients.

%

for i = 1 : 3

for j = 1 : 6

a(ip(i),iu(j)) = a(ip(i),iu(j)) + w(quad) * q(i,quad) * dbdx(j,quad);

a(ip(i),iv(j)) = a(ip(i),iv(j)) + w(quad) * q(i,quad) * dbdy(j,quad);

end

end

end

end

15

