Advanced Research Computing at Virginia Tech (https:/..

HOKIESPEED (CPU/GPU)

HokieSpeed Index
e Overview
Policies
Software
Usage
Examples

Overview / Technical Specifications

HokieSpeed is a GPU-accelerated supercomputing cluster consisting of 204 compute nodes linked to-
gether using a quad data rate (QDR) InfiniBand interconnect. Each HokieSpeed node is outfitted with 24
GB of memory, two six-core Xeon E5645 CPUs and two NVIDIA M2050 / C2050 GPU. As of November
2012, HokieSpeed was ranked No. 221 on the Top500 (http:/www.top500.0org/)supercomputer list and
No. 43 on the Green500 (http:/www.green500.org/) list of energy efficient supercomputers.

Policies

Hokiespeed has two queues, each of which has different policies:

QUEUE NORMAL_Q DEV_Q

Intended Use Production jobs Development and testing
Available Nodes hs004-hs201 All

Max Jobs/User 16 1

Max Nodes/User 64 2

Max Cores/User 768 24

Max Run Time 144 hours 2 hours

Max Core-Hours/User* 27,648 48

1of6 02/03/2017 01:05 PM

* A user cannot, at any one time, have more than this many core-hours allocated across all of their run-
ning jobs. (Core-hours is defined as the number of cores used multiplied by the remaining requested
walltime.) For example, the setting means that a user wishing to run a job with the maximum of 768
cores will be limited to a 36 hour walltime (27,648/768 = 36). This also implies that a job using the max-
imum runtime of 144 hours cannot use more than 192 cores (27,648/144 = 192).

Software and Compilers

In general, users should utilize the module avail command to get an up-to-date list of the software
available on a given system. However, the lists below should provide some feel for the software avail-
able on Hokiespeed. Note that a user will have to load the appropriate module(s) (https:/secure.host-
ing.vt.edu/www.arc.vt.edu/?page_id=992) in order to use a given software package.

Compilers

The following compilers are available on Hokiespeed. Compilers form the lowest level of Hokiespeed’s
module hierarchy (https:/secure.hosting.vt.edu/www.arc.vt.edu/?page_id=992#structure).

o Intel 13.1 (the default)

e GCC4.9.2,453,447

e CUDA 6.5.14,5.0.35,4.1.28
e JDK 1.7,1.6

MPI Stacks

The following MPI Stacks are available on BlueRidge. Compilers form the second level of BlueRidge's
module hierarchy (https:/secure.hosting.vt.edu/www.arc.vt.edu/?page_id=992#structure).

e mvapich2 1.9b, 2.1
e OpenMPI 1.6.4 (the default), 1.8.4
e Intel MP1 4.1

Software

The following specialty software packages are available on HokieSpeed. Since HokieSpeed is a GPU ac-
celerated resource, only those software packages which are able to utilize GPU efficiently will be avail-

able on this resource. For a comparison of software available on all ARC systems, click here (https:/se-

cure.hosting.vt.edu/www.arc.vt.edu/?page_id=114).

e Gromacs 4.5.5

20f6 02/03/2017 01:05 PM

e LAMMPS 27Augi12

e NAMD 2.8

e Amber 2015

e OpenFOAM 2.3, 2.2
R3.0.3,2.14.1

Python 2.7.10

VMD 1.9.1

e ParaView 4.0.1, 3.14.1
e Vislt 2.4.2

Usage

The cluster is accessed via ssh to one of the login nodes hokiespeedl.arc.vt.edu or
hokiespeed2.arc.vt.edu. Log in using your username (usually Virginia Tech PID) and password. You
will need an SSH Client to log in; see here (https:/secure.hosting.vt.edu/www.arc.vt.edu
/?page_id=98#sshClients) for information on how to obtain and use an SSH Client. You must be on a
campus network to access the login node, so off-campus use requires connecting to the CNS VPN
(http:/www.google.com/search?q=vpn+site:answers.vt.edu) first.

Jobs are submitted to ARC resources through a job queuing system, or “scheduler”. Submission of jobs
through a queueing system means that jobs may not run immediately, but will wait until the resources
that it requires are available. The queuing system thus keeps the compute servers from being over-
loaded and allocates dedicated resources across running jobs. This will allow each job to run optimally
once it leaves the queue.

Job management (submission, checking) is described in the Scheduler Interaction tutorial. Please take
note of HokieSpeed's policies and queues when creating your submission script. A step-by-step exam-
ple is provided below.

Examples

Submission Templates

This shell script (https:/secure.hosting.vt.edu/www.arc.vt.edu/wp-content/uploads/2015/08/hs_exam-
ple.gsub) provides a template for submission of jobs on HokieSpeed. The comments in the script include
notes about how to add modules, submit MPI jobs, etc.

To utilize this script template, create your own copy and edit as described here (https:/secure.host-
ing.vt.edu/www.arc.vt.edu/?page_id=1003#script).

30f6 02/03/2017 01:05 PM

Step-by-Step Examples

To compile and run the example CUDA vector addition program (http:/www.arc.vt.edu/resources/soft-
ware/cuda/docs/vectorAdd.cu) on Hokiespeed:

1. SSH into Hokiespeed (See Submitting Jobs (https:/secure.hosting.vt.edu/www.arc.vt.edu
/?page_id=100#submit), above).

2. Download the source code file (link above) and put it in a folder in your Home directory (https:/se-
cure.hosting.vt.edu/www.arc.vt.edu/?page_id=112). See here (https:/secure.hosting.vt.edu
/www.arc.vt.edu/?page_id=464) for information on how to transfer files to and from ARC’s systems.

3. Use the Unix cd command (http:/www.arc.vt.edu/resources/software/unix/directry.php#3) to navi-
gate to that folder.

4. Compile the source code file into an executable:

1. Load the required modules:

1. Check which modules are loaded using the module 1ist command.

2. If they are not already loaded, add the GCC and CUDA modules using the module load com-
mand: module load gcc cuda. (Note that if the Intel compiler is loaded in place of GCC, you
can replace Intel with GCC using the module swap command: module swap intel gcc.)

2. Compile the source code: nvcc -lcuda -lcudart -o vecadd vectorAdd.cu (Note that here
we use the nvcc command since it is an CUDA program.) (Note also that compiling could be done
with a makefile by putting this file (http:/www.arc.vt.edu/resources/hpc/docs/hs_vecadd_make-
file) in the directory, renaming it to simply makefile, and typing makeat the command line.)

3. Your executable is now in the file vecadd. To execute the program, you would use the command:
./vecadd. To do so, however, would run the job on a head node, thereby slowing down the sys-
tem for other users. Therefore, Hokiespeed jobs should be submitted to the scheduler using a
gsubcommand (https:/secure.hosting.vt.edu/www.arc.vt.edu/?page_id=100#submit)(see the next
step).

5. To submit your program to the scheduler, download and open the sample Hokiespeed submission
script (https:/secure.hosting.vt.edu/www.arc.vt.edu/?page_id=100#submit).

6. Edit the script to run your program:

1. The walltime is set with the command #PBS -1 walltime. This is the time that you expect your
job to run; so if you submit your job at 5:00pm on Wednesday and you expect it to finish at
5:00pm on Thursday, the walltime would be 24:00:00. Note that if your job exceeds the walltime
estimated during submission, the scheduler will kill it. So it is important to be conservative (i.e., to
err on the high side) with the walltime that you include in your submission script. The walltime in
the sample script is set to one hour; the quadrature code will run quickly so we'll change the wall-
time to 10 minutes using the command #PBS -1 walltime=00:10:00.

2. Edit the line #PBS -1nodes=1:ppn=6 to set the number of nodes (Inodes) and processors per
node (ppn) that you want to utilize. On Hokiespeed ppnshould generally be set to 6. The number
of nodes available in each queue is described in the Policies (https:/secure.hosting.vt.edu

4 0of6 02/03/2017 01:05 PM

/www.arc.vt.edu/?page_id=100#policies) section. For this example, we'll use 12 cores across 2
nodes using the command #PBS -1 nodes=2:ppn=6.

3. The CUDA vector addition program requires the same modules to run that we needed to compile
it (GCC and CUDA). So the module 1load line should be changed to module load gcc cuda. For
more on Hokiespeed’s module structure, click here (https:/secure.hosting.vt.edu/www.arc.vt.edu
/?page_id=100#modules).

4. Replace everything between the echo "Hello world!" line and (but not including) the exit
lines in the sample script with the command to run your job: . /vecadd.

7. Your script should look something like this (http:/www.arc.vt.edu/resources/hpc/docs
/hs_vecadd_gsub.sh). Save the script file.

8. Copy the compiled file and script to your Work directory (https:/secure.hosting.vt.edu
/www.arc.vt.edu/?page_id=112#work) (example command: cp vecadd $WORK). Running your pro-
gram from Work (or Scratch) will ensure that it gets the fastest possible read/write performance.

9. Navigate to your Work directory: cd $WORK

10. To submit the script, use the qsub command. For example, if you saved your script file as
“hs_vecadd_gsub.sh”, the command would be qsub ./hs vecadd qgsub.sh.

11. The system will return your job name of the form xxxx.Hokiespeed.arc.vt.edu (e.g., 53318.Hok-
iespeed.arc.vt.edu, where 53318 is the job number). Follow the instructions above (https:/se-
cure.hosting.vt.edu/www.arc.vt.edu/?page_id=100#submit) to use gstat to track the progress of
your job, qdel to delete your job, etc.

12. When complete, the program output will be held in the file with the extension .o followed by your
job number (e.g. “hs_vecadd_gsub.sh.053318"). Any errors will be held in the analogous .e file (e.g.
“hs_vecadd_qgsub.sh.e53318").

13. Work and Scratch are wiped periodically, so to ensure that you have long-term access to the results,
copy them back to your Home directory: cp hs vecadd qsub.sh.053318 $HOME

Notes for compiling and running other examples:

o CUDA MPI program (http:/www.arc.vt.edu/resources/software/cuda/docs/cuda-mpi.cu):

1. Requires modules for GCC, CUDA, and an MPI implementation (e.g. OpenMPI): module load
gcc openmpi cuda. Note that you may need to purge the modules before this (module purge);
alternatively, if the Intel compiler is loaded in place of GCC, you can replace Intel with GCC using
themodule swap command (module swap intel gcc).

2. To compile use this makefile (https:/secure.hosting.vt.edu/www.arc.vt.edu/wp-content/uploads
/2015/04/hs_cudampi_makefile.txt) or this command line: nvcc -arch sm 13 -I$VT MPI INC
-L$VT MPI LIB -1lmpi -lcuda -lcudart -o run-cuda-mpi cuda-mpi.cu.($VT_MPI_INC
and $VT_MPI_LIB are environment variables that point to directories associated with the MPI
module loaded.)

3. In the gsub script, run with the following command: mpiexec -npernode 1 ./run-cuda-mpi
(This would run with 1 process per node, which is ideal for CUDA code so that you don’t have

50f6 02/03/2017 01:05 PM

more than one process trying to access the same GPU.)
e CUDA OpenMP program (http:/wwwe.arc.vt.edu/resources/software/cuda/docs/cuda-omp.cu):

1. Requires modules for GCC and CUDA: module load gcc cuda. Note that you may need to
purge the modules before this (nodule purge); alternatively, if the Intel compiler is loaded in
place of GCC, you can replace Intel with GCC using the module swap command (module swap
intel gcc).

2. To compile use this makefile (https:/secure.hosting.vt.edu/www.arc.vt.edu/wp-content/uploads
/2015/04/hs_cudaomp_makefile.txt) or this command line: nvcc -Xcompiler -fopenmp
-lcuda -lcudart -lgomp -o run-cuda-omp cuda-omp.cu

3. In the gsub script, run with the following command: . /run-cuda-omp

o CUDA Matrix Multiplication program (http:/www.arc.vt.edu/resources/software/cuda/docs/Mat-

Mul.cu):

1. Requires modules for GCC and CUDA: module load gcc cuda. Note that you may need to
purge the modules before this (nodule purge); alternatively, if the Intel compiler is loaded in
place of GCC, you can replace Intel with GCC using the module swap command (module swap
intel gcc).

2. To compile use this command line: nvcc -lcuda -lcudart -o run-cuda-matmul MatMul.cu

3. In the gsub script, run with the following command: . /run-cuda-matmul

6 0of 6 02/03/2017 01:05 PM

