Numerical Integration (Quadrature)

Sachin Shanbhag

Dept. Scientific Computing

(based on material borrowed from Dennis Duke, Samir Al-Amer, David Kofke, Holistic Numerical Methods Institute)

Numerical Integration

Why do we need it?

- many integrals cannot be evaluated analytically
- even if you can, you might need to check your answer
- even if you can, numerical evaluation of the answer can be bothersome

Examples:

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{x} \cosh x}=2 \sqrt{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{2 k+1}}
$$

$$
\int_{a}^{b} e^{-x^{2}} d x
$$

Error function

An example of an integral that needs checking:

$$
\begin{aligned}
& \text { (3.15.7) } \int_{0}^{x} \frac{\ln (1+a y) \ln (1+b y)}{1+o y} d y=\frac{1}{c}\left\{\frac{1}{2} \ln ^{2}\left(\frac{c-a}{c}\right) \ln (1+e)+\right. \\
& +\frac{1}{2} \ln ^{2}\left(\frac{c-b}{c}\right) \ln (1+c)-\frac{1}{2} \ln ^{2}\left(\frac{a}{b}\right) \ln (1+b)+ \\
& +\frac{1}{2} \ln ^{2}\left(\frac{a-c}{b-c}\right) \ln \left(\frac{1+b}{1+c}\right)+\ln \left(\frac{c-a}{c}\right)\left[\operatorname{Li}_{2}\left(\frac{a}{a-c}\right)-\mathrm{Li}_{2}\left(a \frac{1+c}{a-c}\right)\right]+ \\
& +\ln \left(\frac{c-b}{c}\right)\left[\operatorname{Li}_{\mathrm{n}}\left(\frac{b}{b-c}\right)-\operatorname{Li}_{2}\left(b \frac{1+o}{b-c}\right)\right]+\mathrm{S}_{3,2}\left(a \frac{1+c}{a-c}\right)- \\
& -S_{1, a}\left(\frac{a}{a-c}\right)+S_{1, a}\left(b \frac{1+c}{b-c}\right)-S_{1, a}\left(\frac{b}{b-c}\right)-S_{1,2}\left(\frac{a-b}{a}\right)+ \\
& +S_{1,2}\left(\frac{a-b}{a(1+b)}\right)-S_{1,2}\left(\frac{(a-b)(1+c)}{(a-c)(1+b)}\right)+S_{1,2}\left(\frac{a-b}{a-c}\right)+ \\
& +\ln \left(\frac{a}{b}\right)\left[\operatorname{Li}_{2}\left(\frac{a-b}{a}\right)-\operatorname{Li}_{2}\left(\frac{a-b}{a(1+b)}\right)\right]+ \\
& \left.+\ln \left(\frac{a-c}{b-c}\right)\left[\operatorname{Li}_{2}\left(\frac{(a-b)(1+c)}{(a-c)(1+b)}\right)-\operatorname{Li} i_{2}\left(\frac{a-b}{a-c}\right)\right]\right\} \\
& \operatorname{Li}_{2}(y)=-\int_{0}^{1} \frac{\ln (1-x y)}{x} \mathrm{~d} x=-\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{~d} x \\
& S_{1,2}(y)=\frac{1}{2} \int_{0}^{1} \frac{\ln ^{2}(1-x y)}{x} d x
\end{aligned}
$$

Possible Issues

the integrand is some sort of table of numbers

- regularly spaced
- irregularly spaced
- contaminated with noise (experimental data)
the integrand is computable everywhere in the range of integration, but there may be
- infinite range of integration
- local discontinuities
considerations
- time to compute the integral
- estimate of the error due to
- truncation
- round-off
- noise in tabulated values

Integral as Riemann sum

- In the differential limit, an integral is equivalent to a summation operation:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{i=n} f\left(x_{i}\right) \Delta x \approx \sum_{i=0}^{N-1} f\left(x_{i}\right) \Delta x
$$

- Approximate methods for determining integrals are mostly based on idea of area between integrand and axis.

Let's try a simple example

n	intervals	$d x$	error
1	2	0.785398	-0.340759
2	4	0.392699	-0.183465
3	8	0.196350	-0.094960
4	16	0.098175	-0.048284
5	32	0.049087	-0.024343
6	64	0.024544	-0.012222
7	128	0.012272	-0.006123
8	256	0.006136	-0.003065
9	512	0.003068	-0.001533
10	1024	0.001534	-0.000767

Analytically

$$
\int_{0}^{\pi / 2} \cos x d x=\left.\sin x\right|_{0} ^{\pi / 2}=1
$$

Note that the error is decreasing by a factor 2 , just like our discretization interval $d x$.

Question: Why is the error = I(exact) - I(calc) negative?

Instead of having the top of the rectangle hit the left (or right) edge we could also have it hit the function at the midpoint of each interval:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{N-1} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \Delta x
$$

n	intervals	dx	error
1	2	0.785398	-0.026172153
2	4	0.392699	-0.006454543
3	8	0.196350	-0.001608189
4	16	0.098175	-0.000401708
5	32	0.049087	-0.000100406
6	64	0.024544	-0.000025100
7	128	0.012272	-0.000006275
8	256	0.006136	-0.000001569
9	512	0.003068	-0.000000392
10	1024	0.001534	-0.000000098

now the error is falling by a factor 4 with each halving of the interval $d x$.

Note that the lines at the top of the rectangles can have any slope whatsoever and we will always get the same answer.

Question: Why is the error smaller?

Question: Why is the error smaller?

Answer:

- One reason is that in the mid-point rule, the maximum distance over which we "extrapolate" our knowledge of $f(x)$ is halved.
- Different integration schemes result from what we think the function is doing between evaluation points.
- Link between interpolation and numerical integration

Orientation

- Newton-Cotes Methods

Use intepolating polynomials. Trapezoid, Simpson's $1 / 3$ and $3 / 8$ rules, Bode's are special cases of 1st, 2nd, 3rd and 4th order polynomials are used, respectively

- Romberg Integration (Richardson Extrapolation)
use knowledge of error estimates to build a recursive higher order scheme
- Gauss Quadrature

Like Newton-Cotes, but instead of a regular grid, choose a set that lets you get higher order accuracy

- Monte Carlo Integration

Use randomly selected grid points. Useful for higher dimensional integrals (d>4)

Newton-Cotes Methods

- In Newton-Cotes Methods, the function is approximated by a polynomial of order n
- To do this, we use ideas learnt from interpolation
- Computing the integral of a polynomial is easy.

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b}\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right) d x
$$

we approximate the function $f(x)$ in the interval $[a, b]$ as:

$$
\begin{gathered}
f(x) \approx a_{0}+a_{1} x+\ldots+a_{n} x^{n} \\
\int_{a}^{b} f(x) d x \approx a_{0}(b-a)+a_{1} \frac{\left(b^{2}-a^{2}\right)}{2}+\ldots+a_{n} \frac{\left(b^{n+1}-a^{n+1}\right)}{n+1}
\end{gathered}
$$

Newton-Cotes Methods

Trapezoid Method (First Order Polynomial are used)

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b}\left(a_{0}+a_{1} x\right) d x
$$

$$
\begin{aligned}
& I=\int_{a}^{b} f(x) d x \\
& I \approx \int_{a}^{b}\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a) \quad b-a\right. \\
& \hline
\end{aligned}
$$

Multi-step Trapezoid Method

If the interval is divided into n segments(not necessarily equal)
$a=x_{0} \leq x_{1} \leq x_{2} \leq \ldots \leq x_{n}=b$
$\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \frac{1}{2}\left(x_{i+1}-x_{i}\right)\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)$
Special Case (Equally spaced base points)

$$
x_{i+1}-x_{i}=h \text { for all } i
$$

$\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{n}\right)\right]+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right]$

Multi-step Trapezoid Method

n	intervals	$d x$	error
1	2	0.78539816	0.05194055
2	4	0.39269908	0.01288420
3	8	0.19634954	0.00321483
4	16	0.09817477	0.00080332
5	32	0.04908739	0.00020081
6	64	0.02454369	0.00005020
7	128	0.01227185	0.00001255
8	256	0.00613592	0.00000314
9	512	0.00306796	0.00000078
10	1024	0.00153398	0.00000020

$$
\int_{0}^{\pi / 2} \cos x d x=\left.\sin x\right|_{0} ^{\pi / 2}=1
$$

Now the error is again decreasing by a factor 4 , so like dx^{2}.

In fact, it can be shown that:

$$
\mid \text { Error } \left.\left|\leq \frac{b-a}{12} h^{2} \max _{x \in[a, b]}\right| f^{\prime \prime}(x) \right\rvert\,
$$

Newton-Cotes Methods

Simpson 1/3 Rule
Second Order Polynomial are used

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx \int_{a}^{b}\left(a_{0}+a_{1} x+a_{2} x^{2}\right) d x \\
\mathrm{~h}=(\mathrm{b}-\mathrm{a}) / 2
\end{gathered}
$$

Simpson 3/8 Rule
Third Order Polynomial are used,

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) d x
$$

$$
h=(b-a) / 3
$$

Newton-Cotes Methods

Degree	Common name	Closed Newton-Cotes Formulas	
1	Trapezoid rule	$\frac{h}{2}\left(f_{0}+f_{1}\right)$	Error term
2	Simpson's rule	$\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)$	$-\frac{h^{3}}{12} f^{(2)}(\xi)$
3	Simpson's 3/8 rule	$\frac{3 h}{80}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right)$	$-\frac{3 h^{5}}{80} f^{(4)}(\xi)$
4	Boole's rule, or Bode's Rule [sic]	$\frac{2 h}{45}\left(7 f_{0}+32 f_{1}+12 f_{2}+32 f_{3}+7 f_{4}\right)$	$-\frac{8 h^{7}}{945} f^{(6)}(\xi)$

These are called "closed" because we use function evaluations at the end-points of the interval. There are "open" formulae which don't evalute $f(a)$ and $f(b)$, but we won't discuss them here.

Romberg Integration

- Trapezoid formula with an interval h gives error of the order $O\left(h^{2}\right)$
- Can we combine two Trapezoid estimates with intervals $2 h$ and h to get a better estimate?
- For a multistep trapezoidal rule, the error is:

$$
E_{t}=\frac{(b-a)^{3}}{12 n^{2}} \frac{\sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)}{n} \quad \text { where } \xi_{i} \in[a+(i-1) h, a+i h]
$$

- Think of $\frac{\sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)}{n}$ as an approximate average value of $f^{\prime \prime}(x)$ in $[a, b]$. Then,

$$
E_{t} \cong \frac{C}{n^{2}}
$$

Romberg Integration

How good is this approximation?

Consider

$$
x=\int_{8}^{30}\left(2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t\right) d t
$$

Vertical distance covered by a rocket between 8 to 30 seconds

n	Value	E_{t}
1	11868	807
2	11266	205
3	11153	91.4
4	11113	51.5
5	11094	33.0
6	11084	22.9
7	11078	16.8
8	11074	12.9

Exact value $x=11061$ meters

Romberg Integration

The true error gets approximately quartered as the number of segments is doubled. This information is used to get a better approximation of the integral, and is the basis of Romberg Integration (or Richardson's extrapolation).

$$
E_{t} \cong \frac{C}{n^{2}} \quad \text { where } C \text { is an approximately constant }
$$

If $I_{\text {true }}=$ true value and $I_{n}=$ approx. value of the integral

$$
\begin{aligned}
& I_{\text {true }} \approx I_{n}+E_{t} \\
& E_{t}(n) \approx C / n^{2} \approx I_{\text {true }}-I_{n} \\
& E_{t}(2 n) \approx C / 4 n^{2} \approx I_{\text {true }}-I_{2 n}
\end{aligned}
$$

Therefore, eliminate C / n^{2} between these two equations

$$
I_{\text {true }} \cong I_{\text {true est }}=I_{2 n}+\frac{I_{2 n}-I_{n}}{3}
$$

Note: What we calculate is still an approximation for $I_{\text {true }}$

Example

The vertical distance covered by a rocket from 8 to 30 seconds is given by

$$
x=\int_{8}^{30}\left(2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t\right) d t \quad \text { Exact value }=11061 \text { meters }
$$

1. Use Richardson's rule to find the distance covered (use table for multistep trapezoidal rule).
2. Find the true error, E_{t} for part (1).

n	Value	E_{t}	RelErr
1	11868	807	7.296
2	11266	205	1.854
3	11153	91.4	0.8265
4	11113	51.5	0.4655
5	11094	33.0	0.2981
6	11084	22.9	0.2070
7	11078	16.8	0.1521
8	11074	12.9	0.1165

Multistep trapezoidal rule

Solution

$$
\begin{aligned}
& I_{2}=11266 m \\
& I_{4}=11113 m
\end{aligned}
$$

Using Richardson's extrapolation formula for Trapezoidal rule, choosing $\mathrm{n}=2$

$$
\begin{array}{r}
\begin{array}{r}
I_{\text {true }} \cong I_{2 n}+\frac{I_{2 n}-I_{n}}{3} \\
\\
=11062 \mathrm{~m}\left(I_{\text {true }, \text { est }}\right) \\
E_{t}=I_{\text {exact }}-I_{\text {true est }}=-1 \mathrm{~m} \\
E_{t} \mid= \\
\left\lvert\, \frac{11061-11062}{11061} \times 100\right.
\end{array}
\end{array}
$$

Solution

$$
x=\int_{8}^{30}\left(2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t\right) d t
$$

\mathbf{n}	Trapezoidal Rule	$\mathbf{e}_{\mathbf{t}}$ for Trapezoidal Rule	Richardson's Extrapolation	$\mathbf{e}_{\mathbf{t}}$ for Richardson's Extrapolation
1	11868	7.296	--	--
2	11266	1.854	11065	0.03616
4	11113	0.4655	11062	0.009041
8	11074	0.1165	11061	0.0000

Usually much better estimates

Romberg Integration: Successive Refinement

A general expression for Romberg integration can be written as

$$
I_{2 n}^{(k)}=\frac{4^{k} I_{2 n}^{(k-1)}-I_{n}^{(k-1)}}{4^{k-1}-1}, k \geq 2
$$

- The index k represents the order of extrapolation.
- In ${ }^{(1)}$ represents the values obtained from the regular Trapezoidal rule with n intervals.
- $k=2$ represents values obtained using the true estimate as $O\left(h^{2}\right)$.
- In ${ }_{n}{ }^{(k)}$ has an error of the order $1 / n^{2 k}$.

Romberg Integration: Successive Iteration

For our particular example:

Questions from last class:

1. What is the error in Romberg integration?

$$
\begin{align*}
& I_{\text {true }} \cong I_{\text {true est }}=I_{2 n}+\frac{I_{2 n}-I_{n}}{3} \tag{4}\\
& E_{t} \cong \frac{C_{1}}{n^{2}}+\frac{C_{2}}{n^{4}}+\frac{C_{3}}{n^{6}} \cdots
\end{align*}
$$

Over here identical to Simpson's rule.

In fact this is how Numerical Recipes (Press et al.) implements the Simpson's rule

Successive iterations:

$$
I_{2 n}^{(k)}=\frac{4^{k} I_{2 n}^{(k-1)}-I_{n}^{(k-1)}}{4^{k-1}-1}, k \geq 2
$$

This has an error of the order $1 / n^{2 k}$.

Questions from last class:

2. Is Romberg better than Simpson's?

Successive iterations:

$$
I_{2 n}^{(k)}=\frac{4^{k} I_{2 n}^{(k-1)}-I_{n}^{(k-1)}}{4^{k-1}-1}, k \geq 2
$$

This has an error of the order $1 / n^{2 k}$.
So usually, yes!
To evaluate an integral to the same degree of accuracy, you need fewer function evaluations with Romberg.

Numerical Recipes:

$$
\int_{0}^{2} x^{4} \log \left(x+\sqrt{x^{2}+1}\right) d x
$$

Simpson's rule makes 8 times
as many function calls

Romberg Integration

Questions:

1. Do I have to use I_{n} and $I_{2 n}$?
2. Is this true only for the trapezoidal rule?

Romberg Integration

Questions:

1. Do I have to use I_{n} and $I_{2 n}$?
2. Is this true only for the trapezoidal rule?

No!

But you have to derive new relationships in lieu of:

$$
I_{2 n}^{(k)}=\frac{4^{k} I_{2 n}^{(k-1)}-I_{n}^{(k-1)}}{4^{k-1}-1}, k \geq 2
$$

But note that it may destroy "recursive structure" used in the expression above to minimize function calls.

Gauss Quadrature

Motivation

Multistep Trapezoid Method

$$
\int_{a}^{b} f(x) d x=h\left[\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2}\left(f\left(x_{0}\right)+f\left(x_{n}\right)\right)\right]
$$

It can be expressed as

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right) \\
& \text { where } c_{i}= \begin{cases}h & i=1,2, \ldots, n-1 \\
0.5 h & i=0 \text { and } n\end{cases}
\end{aligned}
$$

Gauss Quadrature

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right) \\
& c_{i}: \text { Weights } \quad x_{i}: \text { Nodes }
\end{aligned}
$$

Problem

How do we select c_{i} and x_{i} so that the formula gives a better (higher order) approximation of the integral?

Approximate function with Polynomial

$\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x$
where $P_{n}(x)$ is a polynomial that interpolates $\mathrm{f}(\mathrm{x})$
at the nodes $x_{0}, x_{1}, \ldots, x_{n}$
$\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x=\int_{a}^{b}\left(\sum_{i=0}^{n} \ell_{i}(x) f\left(x_{i}\right)\right) d x$
$\Rightarrow \int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} c_{i} f\left(x_{i}\right)$ where $c_{i}=\int_{a}^{b} \ell_{i}(x) d x$

- If the points x_{i} are chosen on a uniform grid, this is exactly Newton-Cotes

Newton-Cotes

For a uniform grid $\left\{x_{i}\right\} P_{n}(x)$ is exact if $f(x)$ is a polynomial $d(n)$

Gaussian Quadrature

Choose the $n+1$ grid points $\left\{x_{i}\right\}$ so that the polynomial $P_{n}(x)$ is exact if $f(x)$ is a polynomial $\mathrm{d}(2 \mathrm{n}+1)$

How do we get nodes and weights

Example:

Can we select nodes and weights so that a $(n+1)=2$ nodes allow us to write a formula that is exact for polynomials of degree $(2 n+1)=3$?

$$
\int_{-1}^{1} f(x) d x=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)
$$

Brute Force:

Set up equations for all polynomials $\mathrm{d}(0)$ to $\mathrm{d}(2 \mathrm{n}+1)$ and solve for c_{i} and x_{i}

$$
\begin{aligned}
& f(x)=1 ; \quad c_{0}+c_{1}=\int_{-1}^{1} 1 d x=2 \\
& f(x)=x ; \quad c_{0} x_{0}+c_{1} x_{1}=\int_{-1}^{1} x d x=0 \\
& f(x)=x^{2} ; \quad c_{0} x_{0}^{2}+c_{1} x_{1}^{2}=\int_{-1}^{1} x^{2} d x=2 / 3 \\
& f(x)=x^{3} ; \quad c_{0} x_{0}^{3}+c_{1} x_{1}^{3}=\int_{-1}^{1} x^{3} d x=2
\end{aligned}
$$

Solve simultaneously, get

$$
\begin{aligned}
& c_{0}=c_{1}=1 \\
& x_{0}=-1 / \sqrt{3} ; x_{1}=1 / \sqrt{3}
\end{aligned}
$$

Nodes and weights for larger n :

Number of points, \boldsymbol{n}	Points, $\boldsymbol{x}_{\boldsymbol{i}}$	C_{i}
1	0	Weights, $\boldsymbol{w}_{\boldsymbol{i}}$
2	$\pm \sqrt{1 / 3}$	1
3	0	$8 / 9$
	$\pm \sqrt{3 / 5}$	$5 / 9$
	$\pm \sqrt{(3-2 \sqrt{6 / 5}) / 7}$	$\frac{18+\sqrt{30}}{36}$
	$\pm \sqrt{(3+2 \sqrt{6 / 5}) / 7}$	$\frac{18-\sqrt{30}}{36}$
	$\pm \frac{1}{3} \sqrt{5-2 \sqrt{10 / 7}}$	$\frac{322+13 \sqrt{70}}{900}$
	$\pm \frac{1}{3} \sqrt{5+2 \sqrt{10 / 7}}$	$\frac{322-13 \sqrt{70}}{900}$

What is my limits are not $[-1,1]$?

For a range of integration other than [-1,1], change of variables

$$
\begin{aligned}
\int_{a}^{b} f(y) d y & =\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2} x+\frac{a+b}{2}\right) d x \\
& =\frac{b-a}{2} \sum_{i=1}^{n} c_{i} f\left(\frac{b-a}{2} x_{i}+\frac{a+b}{2}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =\frac{1}{2} \int_{-1}^{1} e^{-(.5 t+.5)^{2}} d t \\
& =\frac{1}{2}\left[e^{-\left(-0.5 \sqrt{\frac{1}{3}}+.5\right)^{2}}+e^{-\left(0.5 \sqrt{\frac{1}{3}}+.5\right)^{2}}\right]
\end{aligned}
$$

Advantages/Disadvantages

1. For functions that are smooth or approximately polynomial beats Newton-Cotes in accuracy.

$$
\operatorname{erf}(1)=\frac{2}{\pi} \int_{0}^{1} e^{-x^{2}} d x \quad \begin{aligned}
& \text { with } n=3, \text { get } 5 \text { correct } \\
& \text { significant places }
\end{aligned}
$$

2. Not easy to get error bounds (need to know derivative $f^{2 n+2}$).
3. Unlike Romberg Integration, we cannot successively refine (GaussKonrad tries to overcome that.)

Gauss Quadrature: Generalization

What we just looked at was a special case of:

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

with $w(x)=1$. This is called Gauss-Legendre.

There are other forms of Gauss Quadrature (not only Gauss-Legendre) which are useful, when:

1. there are discontinuties,
2. range of integration is not finite,
3. when the weight $w(x)$ can help the function "look" more polynomial
4. Etc.

Generalization

The fundamental theorem of Gaussian quadrature states that the optimal nodes x_{i} of the n-point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function.

Generalization

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

Interval	$\omega(\boldsymbol{x})$	Orthogonal polynomials	A \& S	For more information, see ...
$[-1,1]$	1	Legendre polynomials	25.4 .29	Section Rules for the basic problem, above
$(-1,1)$	$(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1$	Jacobi polynomials	$25.4 .33(\beta=0)$	
$(-1,1)$	$\frac{1}{\sqrt{1-x^{2}}}$	Chebyshev polynomials (first kind)	25.4 .38	Chebyshev-Gauss quadrature
$[-1,1]$	$\sqrt{1-x^{2}}$	Chebyshev polynomials (second kind)	25.4 .40	Chebyshev-Gauss quadrature
$[0, \infty)$	e^{-x}	Laguerre polynomials	25.4 .45	Gauss-Laguerre quadrature
$(-\infty, \infty)$	$e^{-x^{2}}$	Hermite polynomials	25.4 .46	Gauss-Hermite quadrature

Gauss-Legendre

Number of points, \boldsymbol{n}	Points, $\boldsymbol{x}_{\boldsymbol{i}}$	Weights, $\boldsymbol{w}_{\boldsymbol{i}}$
1	0	2
2	$\pm \sqrt{1 / 3}$	1
3	0	$8 / 9$
	$\pm \sqrt{3 / 5}$	$5 / 9$
	$\pm \sqrt{(3-2 \sqrt{6 / 5}) / 7}$	$\frac{18+\sqrt{30}}{36}$
	$\pm \frac{1}{(3+2 \sqrt{6 / 5}) / 7}$	$\frac{18-\sqrt{30}}{36}$
	$\pm \frac{1}{3} \sqrt{5+2 \sqrt{10 / 7}}$	$\frac{322+13 \sqrt{70}}{900}$
		$\frac{322-13 \sqrt{70}}{900}$

All we do are look for zeros of $P_{n}(x)$ in [-1,1]. These are our x_{i}.
The $c_{i} s$ can be obtained from

$$
c_{i}=\frac{2}{\left(1-x_{i}^{2}\right)\left(P_{n}^{\prime}\left(x_{i}\right)\right)^{2}}
$$

Generalization

In practice,

1. Gauss-Legendre is the most widely used Gauss quadrature formula.
2. We look at the limits and the weighting function $w(x)$ for the integral we want to evaluate and decide what quadrature formula might be best.
3. We don't calculate the nodes and weights ourselves. Instead, we look them up for a give n, and simply carry out the weighted sum.
http://www.efunda.com/math/num_integration/num_int_gauss.cfm
4. Note that this may require a change of variables.

Monte Carlo Integration

Adapting notes from David Kofke's
Molecular Simulation class.

One-Dimensional Integrals

- Methodical approaches
- trapezoid rule, Simpson's rule, Gauss quadrature

Monte Carlo Integration

- Stochastic approach
- Same quadrature formula, different selection of points

- http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Random Number Generation

- Random number generators
- subroutines that provide a new random deviate with each call
- basic generators give value on $(0,1)$ with uniform probability
- uses a deterministic algorithm (of course)
- usually involves multiplication and truncation of leading bits of a number

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m \quad \text { linear congruential sequence }
$$

- Returns set of numbers that meet many statistical measures of randomness
- histogram is uniform
- no systematic correlation of deviates
- no idea what next value will be from knowledge of present value (without knowing generation algorithm)
- but eventually, the series must end up repeating
- Some famous failures
- be careful to use a good quality generator

Plot of successive deviates $\left(X_{n}, X_{n+1}\right)$

Not so random.

Random Number Generation

- RANDU
- Linear congruential sequence developed in the 1960s at IBM

Not so random!
http://www.purinchu.net/wp/2009/02/06/the-randu-pseudo-random-number-generator/

Errors in Random vs. Methodical Sampling

- Comparison of errors
- methodical approach
- Monte Carlo integration

$$
\begin{aligned}
& \text { for example (Simpson's rule) } \\
& \delta I \propto \Delta x^{2} \propto n^{-2} \\
& \delta I \propto n^{-1 / 2}
\end{aligned}
$$

- MC error vanishes much more slowly for increasing n
- For one-dimensional integrals, MC offers no advantage
- This conclusion changes as the dimension d of the integral increases
- methodical approach
- MC integration
independent of dimension!
- MC "wins" at about $d=4$

Shape of High-Dimensional Regions

- Two (and higher) dimensional shapes can be complex
- How to construct and weight points in a grid that covers the region R ?

$$
\left\langle r^{2}\right\rangle=\frac{\iint_{R}\left(x^{2}+y^{2}\right) d x d y}{\iint_{R} d x d y}
$$

Shape of High-Dimensional Regions

- Two (and higher) dimensional shapes can be complex
- How to construct and weight points in a grid that covers the region R ?
- hard to formulate a methodical algorithm in a complex boundary
- usually do not have analytic expression for position of boundary
- complexity of shape can increase unimaginably as dimension of integral grows

Example: mean-square distance from origin

$$
\left\langle r^{2}\right\rangle=\frac{\iint_{R}\left(x^{2}+y^{2}\right) d x d y}{\iint_{R} d x d y}
$$

High-Dimensional Integrals

Sample Integral from Statistical Physics

$$
\langle U\rangle=\frac{1}{Z_{N}} \frac{1}{N!} \int d r^{N} U\left(r^{N}\right) e^{-\beta U\left(r^{N}\right)}
$$

- N=100 modest (course project)

Therefore, in 3D, 300 dimensional integral

- Say 10 grid points in each dimension (very coarse) \# function evaluations: 10^{300} (assume 1 flop)
- IBM BlueGene/L-system: 300 Tflop
- Total time: $10^{300} / 10^{15} \sim 10^{285} \mathrm{~s}=10^{277}$ years
- Age of the universe: 10^{14} \# atoms on earth: 10^{50}

High-Dimensional Integrals

Sample Integral from Statistical Physics

$$
\langle U\rangle=\frac{1}{Z_{N}} \frac{1}{N!} \int d r^{N} U\left(r^{N}\right) e^{-\beta U\left(r^{N}\right) \quad 3 N_{\text {particle }} \text { dimensional integral }}
$$

- N=100 modest (course project)

Therefore, in 3D, 300 dimensional integral

> But we routinely compute such properties using MC

Age of the universe: 10^{11}
\# atoms on earth: 10^{50}

Integrate Over a Simple Shape? 1.

- Modify integrand to cast integral into a simple shaped region
- define a function indicating if inside or outside R

- Difficult problems remain
- grid must be fine enough to resolve shape
- many points lie outside region of interest
- too many quadrature points for our highdimensional integrals (see applet again)
-http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Integrate Over a Simple Shape? 2.

- Statistical-mechanics integrals typically have significant contributions from miniscule regions of the integration space
- $\langle U\rangle=\frac{1}{Z_{N}} \frac{1}{N!} \int d r^{N} U\left(r^{N}\right) e^{-\beta U\left(r^{N}\right)}$
- contributions come only when no spheres overlap

- e.g., 100 spheres at freezing the fraction is 10^{-260}
- Evaluation of integral is possible only if restricted to

$$
\left(e^{-\beta U} \neq 0\right)
$$ region important to integral

- must contend with complex shape of region
- MC methods highly suited to "importance sampling"

Importance Sampling

- Put more quadrature points in regions where integral receives its greatest contributions

Return to 1-dimensional example $\quad I=\int_{0} 3 x^{2} d x$
Most contribution from region near $x=1$

- Choose quadrature points not uniformly, but according to distribution $\pi(x)$
- linear form is one possibility
- How to revise the integral to remove the bias?

The Importance-Sampled Integral

- Consider a rectangle-rule quadrature with unevenly spaced abscissas

$$
I \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}
$$

- Spacing between points
- reciprocal of local number of points per unit length

$$
\Delta x_{i}=\frac{b-a}{n} \frac{1}{\pi\left(x_{i}\right)}
$$

 Greater $\pi(x) \rightarrow$ more points \rightarrow smaller spacing

- Importance-sampled rectangle rule
- Same formula for MC sampling

$$
I \approx \frac{b-a}{n} \sum_{\substack{i=1 \\ \pi(x)}}^{n} \frac{f\left(x_{i}\right)}{\pi\left(x_{i}\right)} \longleftarrow{ }^{\text {choose x points }} \text { according to } \pi(x)
$$

The Importance-Sampled Integral

Error in MC is related to the variance:

$$
\varepsilon^{2} \approx \frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{n}
$$

Can't control the $n^{-1 / 2}$ dependence

If $\mathrm{f}=$ constant, then numerator, and error vanish

Choose π to make f / π approximately constant, then can make error go to zero even if f is not constant.

$$
\varepsilon^{2} \approx \frac{\left\langle\left(\frac{f}{\pi}\right)^{2}\right\rangle-\left\langle\left(\frac{f}{\pi}\right)\right\rangle^{2}}{n}
$$

Generating Nonuniform Random Deviates

- Probability theory says...
- ...given a probability distribution $u(z)$
- if x is a function $x(z)$,
- then the distribution of $\pi(x)$ obeys $\pi(x)=u(z) \frac{d z}{d x}$
- Prescription for $\pi(x)$
- solve this equation for $x(z)$
- generate z from the uniform random generator
- compute $x(z)$
- Example
- we want $\pi(x)=a x$ on $x=(0,1)$
- then $z=\frac{1}{2} a x^{2}+c=x^{2} \quad a$ and c from "boundary conditions"
- so $x=z^{1 / 2}$
- taking square root of uniform deviate gives linearly distributed values
- Generating $\pi(x)$ requires knowledge of $\int \pi(x) d x$

Generating Nonuniform Random Deviates

Example:

Generate x from linearly distributed random numbers between $[a, b), \pi(x)$
If $\pi(x)$ is normalized then,

$$
\pi(x)=\frac{2 x}{b^{2}-a^{2}}
$$

If we have $u(z)$ a uniform random number $[0,1)$

$$
\begin{aligned}
& \pi(x)=\frac{2 x}{b^{2}-a^{2}}=1 \frac{d z}{d x} \\
& \int_{a}^{x} d x \frac{2 x}{b^{2}-a^{2}}=\int_{0}^{z} d z \\
& x=\sqrt{a^{2}+\left(b^{2}-a^{2}\right) z}
\end{aligned}
$$

Choosing a Good Weighting Function

- MC importance-sampling quadrature formula

$$
I \approx \frac{1}{n} \sum_{\substack{i=1 \\ \pi(x)}}^{n} \frac{f\left(x_{i}\right)}{\pi\left(x_{i}\right)}
$$

- Do not want $\pi(x)$ to be too much smaller or too much larger than $f(x)$
- too small leads to significant contribution from poorly sampled region
- too large means that too much sampling is done in region that is not (now) contributing much

Variance in Importance Sampling Integration

- Choose π to minimize variance in average

		$f(x)=3 x^{2}$	
$\pi(x)$	σ_{I}	0.10	-1.000
1	$2 / \sqrt{5 n}$	-0,	\bigcirc
$2 x$	$1 / \sqrt{8 n}$	-o.	\bigcirc
$3 x^{2}$		。	。
$4 x^{3}$	$1 / \sqrt{8 n}$	-os	\bigcirc

- Smallest variance in average corresponds to $\pi(x)=c \times f(x)$
- not a viable choice
- the constant here is selected to normalize $\pi(x)$
- if we can normalize $\pi(x)$ we can evaluate $\int \pi(x) d x$
- this is equivalent to solving the desired integral of $f(x)$
- http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Summary

- Monte Carlo methods use stochastic process to answer a non-stochastic question
- generate a random sample from an ensemble
- compute properties as ensemble average
- permits more flexibility to design sampling algorithm
- Monte Carlo integration
- good for high-dimensional integrals
- better error properties
- better suited for integrating in complex shape
- Importance Sampling
- focuses selection of points to region contributing most to integral
- selecting of weighting function is important
- choosing perfect weight function is same as solving integral

Extra Slides

Approximate function with Polynomial

Recall, that the interpolating polynomial depends on the chosen grid points

$$
P_{n}(x)=\sum_{i=0}^{n} l_{i}(x) f\left(x_{i}\right)
$$

Langrange interpolants can be written as,

$$
\begin{aligned}
& l_{i}(x)=\frac{\alpha(x)}{\left(x-x_{i}\right) \alpha^{\prime}\left(x_{i}\right)} \\
& \alpha(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) . .\left(x-x_{n}\right)=\prod_{i=0}^{n}\left(x-x_{i}\right) \\
& \alpha^{\prime}\left(x_{i}\right)=\prod_{\substack{j=0 \\
j \neq i}}^{n}\left(x_{i}-x_{j}\right) \\
& \text { Note that here, } \lim _{x \rightarrow x_{i}} l_{i}(x)=\lim _{x \rightarrow x_{i}} \frac{\alpha(x)}{\left(x-x_{i}\right) \alpha^{\prime}\left(x_{i}\right)}=1
\end{aligned}
$$

Theorem (Gauss)

Let $P(x)$ be a nontrivial polynomial of degree n such that it is orthogonal to polynomials of lesser degree

$$
\int_{a}^{b} x^{k} P(x) d x=0 \quad 0 \leq k \leq n-1
$$

If $x_{0}, x_{1}, x_{2}, \ldots x_{n}$ are zeros of $P(x)$ and

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} c_{i} f\left(x_{i}\right) \text { where } c_{i}=\int_{a}^{b} \ell_{i}(x) d x
$$

Then this approximation is exact for all polynomials of degree less than or equal to $2 n+1$

Method 2:

In practice, we use Gauss' Theorem and well-studied classes of orthogonal polynomials

Here, Legendre Polynomials (hence sometimes Gauss-Legendre Quadrature)

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{n m}
$$

All we do are look for zeros of $P_{n}(x)$ in $[-1,1]$. These are our x_{i}.
The $c_{i} s$ can be obtained from

$$
c_{i}=\frac{2}{\left(1-x_{i}^{2}\right)\left(P_{n}^{\prime}\left(x_{i}\right)\right)^{2}}
$$

