The Monte Carlo Method

An Introduction to Markov Chain MC

Sachin Shanbhag

Department of Scientific Computing, Florida State University

Sources

1. "Introduction to Monte Carlo Algorithms": Werner Krauth. Available as a pdf download at hitto://lps.ens.fr/~krauth. This is a great introduction to MC methods, geared towards applications in physical sciences, through puzzles and simple non-technical problems.
2. David Kofke's page on Molecular Simulation.

Markov Chains

Transition-Probability Matrix

-system with three states
Example

$$
\Pi \equiv\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right)=\left(\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & \boxed{0.0} \\
0.3 & 0.3 & 0.4
\end{array}\right) \quad \begin{aligned}
& \text { If in state 1, will move to state } 3 \\
& \text { with probability } 0.4
\end{aligned} \quad \text { Never go to state } 3 \text { from state 2 }
$$

Requirements of transition-probability matrix

-all probabilities non-negative, and no greater than unity
-sum of each row is unity
-probability of staying in present state may be non-zero

Distribution of State Occupancies

- Consider process of repeatedly moving from one state to the next, choosing each subsequent state according to Π
$-1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow$ etc.
- Histogram the occupancy number for each state
$\left.\begin{array}{l}-n_{1}=3 \\ -n_{2}=5 \\ -n_{3}=4\end{array}\right\} \begin{array}{r}p_{1}=0.33 \\ p_{2}=0.42 \\ p_{3}=0.25\end{array}$

- After very many steps, a limiting distribution emerges

The Limiting Distribution

- Consider the product of Π with itself

$$
\begin{aligned}
\Pi^{2} & \equiv\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right) \times\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right) \quad \text { All ways of going from state } \\
& =\left(\begin{array}{lll}
\pi_{11} \pi_{11}+\pi_{12} \pi_{21}+\pi_{13} \pi_{31} & \pi_{11} \pi_{12}+\pi_{12} \pi_{22}+\pi_{13} \pi_{32} & \text { etc. } \\
\pi_{21} \pi_{11}+\pi_{22} \pi_{21}+\pi_{23} \pi_{31} & \pi_{21} \pi_{12}+\pi_{22} \pi_{22}+\pi_{23} \pi_{32} & \text { etc. } \\
\pi_{31} \pi_{11}+\pi_{32} \pi_{21}+\pi_{33} \pi_{31} & \pi_{31} \pi_{12}+\pi_{32} \pi_{22}+\pi_{33} \pi_{32} & \text { etc. }
\end{array}\right)
\end{aligned}
$$

- In general Π^{n} is the n-step transition probability matrix
- probabilities of going from state i to j in exactly n steps

$$
\Pi^{n} \equiv\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right) \quad \text { defines } \pi_{i j}^{(n)}
$$

The Limiting Distribution

- Define $\pi_{i}^{(0)}$ as a unit state vector

$$
\pi_{1}^{(0)}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \pi_{2}^{(0)}=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \pi_{3}^{(0)}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

- Then $\pi_{i}^{(n)} \equiv \pi_{i}^{(0)} \Pi^{n}$ is a vector of probabilities for ending at each state after n steps if beginning at state i

$$
\pi_{1}^{(n)}=\pi_{1}^{(0)} \Pi^{n} \equiv\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right)=\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)}
\end{array}\right)
$$

- The limiting distribution corresponds to $n \rightarrow \infty$
- independent of initial state

$$
\pi_{1}^{(\infty)}=\pi_{2}^{(\infty)}=\pi_{3}^{(\infty)} \equiv \pi
$$

The Limiting Distribution

- Stationary property of π

$$
\begin{aligned}
\pi & =\lim _{n \rightarrow \infty}\left[\pi_{i}^{(0)} \Pi^{n}\right] \\
& =\left(\lim _{x \rightarrow \infty}\left[\pi_{i}^{(0)} \Pi^{n-1}\right]\right) \Pi \\
& =\pi \Pi
\end{aligned}
$$

- π is a left eigenvector of Π with unit eigenvalue
- such an eigenvector is guaranteed to exist for matrices with rows that each sum to unity
- Equation for elements of limiting distribution π

$$
\begin{aligned}
& \pi_{i}=\sum_{j} \pi_{j} \pi_{j i} \quad \text { e.g. } \Pi=\left(\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & 0.0 \\
0.3 & 0.3 & 0.4
\end{array}\right) \stackrel{\pi_{1}=0.1 \pi_{1}+0.9 \pi_{2}+0.3 \pi_{3}}{\pi_{2}=0.5 \pi_{1}+0.1 \pi_{2}+0.3 \pi_{3}} \\
& \pi_{3}=0.4 \pi_{1}+0.0 \pi_{2}+0.4 \pi_{3} \\
& \pi_{1}+\pi_{2}+\pi_{3}=\pi_{1}+\pi_{2}+\pi_{3}
\end{aligned}
$$

Statistical Mechanics

$\begin{array}{ll}\text { N particles, } & \\ \text { position } & r_{i}=(x, y, z) \\ \text { momentum } & p_{i}=\left(p_{x}, p_{y}, p_{z}\right)\end{array}$
$\left\{\mathbf{r}_{\mathrm{i}}, \mathbf{p}_{\mathrm{i}}\right\}=6 \mathrm{~N}$ degrees of freedom
A particular snapshot of $\left\{\mathbf{r}_{\mathbf{i}}, \mathbf{p}_{\mathrm{i}}\right\}$ is called a microstate

Total energy of the system

$$
\begin{array}{rlrl}
H\left(\left\{\mathbf{r}_{i}, \mathbf{p}_{\mathrm{i}}\right\}\right) & =U\left(\left\{\mathbf{r}_{\mathrm{i}}\right\}\right)+\mathrm{K}\left(\left\{\mathbf{p}_{\mathrm{i}}\right\}\right) & \\
U & =U\left(\left\{\mathbf{r}_{\mathrm{i}}\right\}\right) & & \text { potential energy } \\
K & =\Sigma \mathbf{p}_{\mathrm{i}}{ }^{2} / 2 m_{\mathrm{i}} & & \text { (often pairwise summation) }
\end{array}
$$

Statistical Mechanics

In an NVT ensemble,

$$
\pi\left(\mathbf{r}_{i}, \mathbf{p}_{i}\right)=\frac{1}{Q} \exp \left(-\frac{H\left(\mathbf{r}_{i}, \mathbf{p}_{i}\right)}{k T}\right)
$$

where $\mathrm{Q}=$ classical partition function, defined by

$$
Q=\frac{1}{h^{3 N} N!} \int d \mathbf{p}_{1} \int d \mathbf{p}_{2} \cdots \int d \mathbf{p}_{N} \int d \mathbf{r}_{1} \int d \mathbf{r}_{2} \cdots \int d \mathbf{r}_{N} \exp \left(-\frac{H\left(\mathbf{r}_{i}, \mathbf{p}_{i}\right)}{k T}\right)
$$

this is like a effective volume of the phase space

It is related to the free energy via $A / k T=-\ln Q(N, V, T)$
An average property (e.g. specific heat) may be obtained via,

$$
\langle A\rangle=\int d \mathbf{p}^{N} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}, \mathbf{p}_{i}\right) \pi\left(\mathbf{r}_{i}, \mathbf{p}_{i}\right)
$$

Statistical Mechanics

The kinetic energy factors can be integrated out,

$$
\begin{aligned}
& Q=\frac{1}{h^{3 N} N!} \int d \mathbf{p}^{N} \int d \mathbf{r}^{N} \exp \left(-\frac{U\left(\left\{\mathbf{r}_{i}\right\}\right)+K\left(\left\{\mathbf{p}_{i}\right\}\right)}{k T}\right) \\
& Q=\frac{1}{h^{\prime N} N!} \int d \mathbf{r}^{N} \exp \left(-\frac{U\left(\left\{\mathbf{r}_{i}\right\}\right)}{k T}\right) \int d \mathbf{p}^{N} \sum \frac{p_{i}^{2}}{2 m_{i}}
\end{aligned}
$$

$\mathrm{Z}_{\mathrm{N}}=$ configurational integral

$$
Q=\frac{Z_{N}}{\Lambda^{3 N}}
$$

It is easy to show that,

$$
\langle A\rangle=\frac{1}{Z_{N} N!} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}\right) \exp \left(-\frac{U}{k T}\right)
$$

Why do we care?
In MC, unlike MD, we don't typically have access to momenta (only positions).

Statistical Mechanics

This is an integration problem, I can use quadrature!

$$
\langle A\rangle=\frac{1}{Z_{N} N!} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}\right) \exp \left(-\frac{U}{k T}\right)
$$

One dimensional integrals

$$
I=\int_{a}^{b} f(x) d x
$$

$$
\begin{array}{rrr}
\text { Error } \delta I \sim 1 / \text { n }^{2} & (\text { for 1D }) \\
\delta I \sim 1 / n^{2 / D} & \text { (for dD) }
\end{array}
$$

Where is Monte Carlo?

This is an integration problem, I can use quadrature!

$$
\langle A\rangle=\frac{1}{Z_{N} N!} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}\right) \exp \left(-\frac{U}{k T}\right)
$$

One dimensional integrals

$$
I=\int_{a}^{b} f(x) d x \quad \begin{array}{rrr}
\text { Error } \delta I \sim 1 / \text { n }^{0.5} & \text { (for 1D) } \\
\delta I \sim 1 / \text { n }^{0.5} & \text { (for dD) }
\end{array}
$$

Where is Monte Carlo?

$$
\langle A\rangle=\frac{1}{Z_{N} N!} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}\right) \exp \left(-\frac{U}{k T}\right)
$$

Typically, 3D space, say
$\mathrm{N}=100$ particles, $\mathrm{DOF}=3 \mathrm{~N}=300$
$\mathrm{n}=10$ points between $(-\mathrm{L},+\mathrm{L})\left(\mathrm{dx} \mathrm{x}_{1}\right.$, for example)

Fastest computers (IBM BlueGene/L ~ 500 Tflops)
Time required $=10^{300} / 5^{*} 10^{14} \sim 10^{278}$ years
If each function evaluation is 1 flop (lower-bound), need 10^{300} function evaluations to get integral.

age of the universe 13
billion years

IMPOSSIBLE

The Ubiquity of Monte Carlo... Random Examples

Finance and
Social Sciences

Chip Design and Newpaper Panels
"floorplanning"

Broadly Speaking...

The Tradition of Monte Carlo

Fermi
(1930-1950) various attempts

The Manhattan Project

Ulam, Feynman, von Neumann

The Miracle of the Central Limit Theorem

$$
x_{1}=\therefore \square
$$

The probability distribution of the average of independent random variables becomes increasingly Gaussian and increasingly narrower
sigma ~ 1/sqrt(N)

Children's game in Monaco

Mathematically oriented kids of Monaco want to find the "pi"
$\mathrm{N}_{\text {red }} /\left(\mathrm{N}_{\text {red }}+\mathrm{N}_{\text {blue }}\right)$
$=\mathrm{A}_{\mathrm{ci}} / \mathrm{A}_{\mathrm{sq}}$
$=\mathrm{pi}^{*}(\mathrm{a} / 2)^{2} / \mathrm{a}^{2}$
$=\mathrm{pi} / 4$
pi $=4 * N_{\text {red }} /\left(\mathrm{N}_{\text {red }}+\mathrm{N}_{\text {blue }}\right)$
$\mathrm{N}=\mathrm{N}_{\text {red }}+\mathrm{N}_{\text {blue }}$

```
bench
```


bench

Here, pi $=4$ *10/13~3.08

Children's game in Monaco

The invisible hand of the CLT operates to ensure that we converge to the true value of "pi" as the number of rocks thrown is increased. "Error" vanishes as $1 /$ sqrt(N)

Older people's game in Monaco

"Time" spent planting flags in the circular region is proportional to the area of the circle

CHOICES

(i) Move to "B". Plant a gray flag. Continue throwing.
(ii) Stay at "A". Don't plant flag. Throw again.
(iii) Stay at "A". Plant a flag. Continue throwing.

Many MC simulations are wrong because they make the wrong choice.
plant flags on a helipad

$$
\mathrm{pi}=4 * \mathrm{~N}_{\text {red }} /\left(\mathrm{N}_{\text {red }}+\mathrm{N}_{\text {blue }}\right)
$$

Condition of Detailed Balance will give us sound advice.

Some Concepts

KID'S GAME

Each sample (place where throw lands) independent

Direct Sampling

Converges faster (Think CLT, think independent samples)

May not be feasible for realistic problems!

OLDER PEOPLE'S VERSION

Sample dependent on previous position (is within radius of 500ft)

Markov-chain Sampling

Need more throws (samples) to attain same level of accuracy

Coins in a Shoebox Problem

Q: How do you generate random configurations of coins such that they don't overlap?

Direct Sampling
 Markov-chain Sampling

Random Sequential Depositon (?)

Physicists (since 1953) haven't
found a direct sampling algorithm

Start with a legit configuration
Trial: Move a randomly chosen coin just

So far...

Central Limit Theorem: The Engine

Sampling: How do I generate trials?

Kid's game, better, not always possible

Coin in a shoe-box problem

Unsolved Mystery: What should you do if you throw the stone out of bounds in the adults' game? Tricky question, full of consequences for world peace and prosperity. We said upcoming "condition of detailed balance" will resolve it.

Scrambling Game

4	2	8
1	p	7
6	3	5

Toddler's algorithm
Objective: Create a perfect scrambling algorithm such that any possible configuration of the puzzle is generated with equal probability

Rip the whole thing apart
Put it back together

Scrambling Game

Older People Version

Move the empty square in a random direction, each timestep
Choose central square to go (N, E, W, S) each with probability $1 / 4$ (which is indeed correct)

Scrambling Game

Scrambling Game

$$
\begin{gather*}
{[p(a \rightarrow b)+p(a \rightarrow c)+p(a \rightarrow d)] F(a)=F(b) p(b \rightarrow a)+F(c) p(c \rightarrow a)+F(d) p(d \rightarrow a)} \\
F(a) p(a \rightarrow b)+\quad F(b) p(b \rightarrow a)+ \\
F(a) p(a \rightarrow c)+=F(c) p(c \rightarrow a)+ \tag{A}\\
F(a) p(a \rightarrow d) \quad F(d) p(d \rightarrow a)
\end{gather*}
$$

Impose a condition that terms of the same color on either side of the "=" are equal

$$
\begin{aligned}
& F(a) p(a \rightarrow b)=F(b) p(b \rightarrow a) \\
& F(a) p(a \rightarrow c)=F(c) p(c \rightarrow a) \\
& F(a) p(a \rightarrow d)=F(d) p(d \rightarrow a)
\end{aligned}
$$

This "recipe" for satisfying equation (A) is called the condition of detailed balance
Sufficient, but not necessary condition

Scrambling Game

Look at one of these carefully,

$$
\begin{aligned}
& p(a \rightarrow c) / p(c \rightarrow a)=F(c) / F(a) \\
& \text { Given: } F(a)=F(c) \\
& \begin{aligned}
p(a \rightarrow c) & =p(c \rightarrow a) \\
& =0.25(\operatorname{not} 1 / 3)
\end{aligned}
\end{aligned}
$$

Therefore algorithm is:
(i) Pick $\{\mathrm{N}, \mathrm{E}, \mathrm{W}, \mathrm{S}\}$ with equal probability
(ii) Move blank square to corresponding direction, if possible. Otherwise, stay where you are, reject the move, and advance the clock.

Older people's game in Monaco

"Time" spent planting flags in the circular region is proportional to the area of the circle

CHOICES

(i) Move to "B". Plant a gray flag. Continue throwing.
(ii) Stay at "A". Don't plant flag. Throw again.
(iii) Stay at "A". Plant a flag. Continue throwing.

Many MC simulations are wrong because they make the wrong choice.
plant flags on a helipad

Condition of Detailed Balance will give us wise advice.

$$
\mathrm{pi}=4 * \mathrm{~N}_{\text {red }} /\left(\mathrm{N}_{\text {red }}+\mathrm{N}_{\text {blue }}\right)
$$

Some More Concepts

Concept of REJECTION arose from the condition of detailed balance

$$
4 \mathrm{p}(\mathrm{a} \rightarrow \mathrm{c}) / \mathrm{p}(\mathrm{c} \rightarrow \mathrm{a})=\mathrm{F}(\mathrm{c}) / \mathrm{F}(\mathrm{a})
$$

This method of rejection has been enshrined into the "Metropolis Algorithm"

$$
p(a \rightarrow c)=\min [1, F(c) / F(a)]
$$

Connection with Statistical Mechanics

$$
\begin{aligned}
& F(c)=\exp \left(-U_{c} / k_{B} T\right) \\
& p(a \rightarrow c)=\min \left[1, \exp \left[-\left(U_{c}-U_{a}\right) / k_{B} T\right]\right]
\end{aligned}
$$

Boltzmann

The Metropolis Method

(over 7500 citations between 1988-2003)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER $6 \quad$ JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis with the MANIAC

Back to Statistical Mechanics

It may be possible to
Observation 1

In the area of the circle problem, we evaluated an area (like a partition function), and the probability distribution was uniform (obs 1 and 2 inapplicable).

4	2	8
1	D	8
6	7	
6	3	5

In the scramble problem, the probability distribution was uniform (obs 1 inapplicable)

Back to Statistical Mechanics

$$
\langle A\rangle=\frac{1}{Z_{N} N!} \int d \mathbf{r}^{N} A\left(\mathbf{r}_{i}\right) \exp \left(-\frac{U}{k T}\right)
$$

Metropolis helps us generate new microstates with the appropriate probability. Thus a simple average over all the microstates gives us <A>

Samples the important region of phase space

Detailed Balance

- Eigenvector equation for limiting distribution

$$
-\pi_{i}=\sum_{j} \pi_{j} \pi_{j i}
$$

- A sufficient (but not necessary) condition for solution is
$-\pi_{i} \pi_{i j}=\pi_{j} \pi_{j i}$
- "detailed balance" or "microscopic reversibility"
- Thus

$$
\begin{aligned}
-\pi_{i} & =\sum_{j} \pi_{j} \pi_{j i} \\
& =\sum_{j} \pi_{i} \pi_{i j} \\
& =\pi_{i} \sum_{j} \pi_{i j}=\pi_{i}
\end{aligned}
$$

Tutorial: Ising Model

1924: Ising solved 1D
1944: Onsager solved 2D

> Simple model for understanding magnetism

Ferromagnets: Fe, Ni - magnetic even in the absence of

Unpaired electrons =
origin of magnetism

Paramagnets: AI, Ba - magnetic only in the presence of an electric field

Tutorial: Ising Model

(a) Energy

$$
E(\{\sigma\})=-J \sum \sigma_{i} \sigma_{j}
$$

(b) Magnetization

$$
M(\{\sigma\})=\frac{\sum \sigma_{i}}{N}
$$

Tutorial: Markov Chains

Tutorial: Markov Chains

