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SourcesSources

1. “Introduction to Monte Carlo Algorithms”: Werner Krauth. Available as a pdf
download at http://lps.ens.fr/~krauth. This is a great introduction to MC
methods, geared towards applications in physical sciences, through puzzles
and simple non-technical problems.

2. David Kofke’s page on Molecular Simulation.



Markov ChainsMarkov Chains

Transition-Probability Matrix

Example
–system with three states

Requirements of transition-probability matrix

–all probabilities non-negative, and no greater than unity
–sum of each row is unity
–probability of staying in present state may be non-zero
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If in state 1, will stay in state 1
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Distribution of State Occupancies

• Consider process of repeatedly moving from one state to the next,
choosing each subsequent state according to Π
– 1→ 2 → 2 → 1 → 3 → 2 → 2 → 3 → 3 → 1 → 2 → 3 → etc.

• Histogram the occupancy number for each state
– n1 = 3 p1 = 0.33
– n2 = 5 p2 = 0.42
– n3 = 4 p3 = 0.25

• After very many steps, a limiting distribution emerges
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• Consider the product of Π with itself

• In general       is the n-step transition probability matrix
– probabilities of going from state i to j in exactly n steps

The Limiting Distribution
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The Limiting Distribution

• Define        as a unit state vector

• Then                        is a vector of probabilities for ending at each state
after n steps if beginning at state i

• The limiting distribution corresponds to n → ∞
– independent of initial state
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• Stationary property of π

• π is a left eigenvector of Π with unit eigenvalue

– such an eigenvector is guaranteed to exist for matrices with rows that
each sum to unity

• Equation for elements of limiting distribution π
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Statistical MechanicsStatistical Mechanics

NVT
N particles, 
position       ri = (x,y,z)
momentum pi = (px, py, pz)

{ri, pi} = 6N degrees of freedom

A particular snapshot of {ri, pi} is
called a microstate

Total energy of the system

H({ri, pi}) = U({ri}) + K({pi})

U = U({ri})   potential energy
(often pairwise summation)

K = Σ pi
2/2mi kinetic energy  



Statistical MechanicsStatistical Mechanics

NVTIn an NVT ensemble,
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It is related to the free energy via  A/kT = - ln Q(N,V,T)

An average property (e.g. specific heat) may be obtained via,

this is like a effective volume of the phase space



Statistical MechanicsStatistical Mechanics

The kinetic energy factors can be integrated out,

! 

Q =
1

h
3N
N!

dp N" dr
N" exp(#

U({ri}) + K({pi})

kT
)

Q =
1

h
3N
N!

dr
N" exp(#

U({ri})

kT
) dp N"

pi
2

2mi

$

ZN = configurational integral  
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3N Why do we care?

In MC, unlike MD, we don’t
typically have access to

momenta (only positions).
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It is easy to show that,



Statistical MechanicsStatistical Mechanics
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This is an integration problem, I can use quadrature!

One dimensional integrals
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Error δI ~ 1/n2 (for 1D)
         δI ~ 1/n2/D (for dD)

NVT



Where is Monte Carlo?Where is Monte Carlo?
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For large dimensions,
MC has better
convergence



Where is Monte Carlo?Where is Monte Carlo?
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Typically, 3D space, say

N=100 particles, DOF = 3N = 300

n=10 points between (-L, +L) (dx1, for example)

If each function evaluation
is 1 flop (lower-bound),
need 10300  function
evaluations to get integral.

Fastest computers (IBM BlueGene/L ~ 500 Tflops)

Time required = 10300/5*1014 ~ 10278 years

age of the universe 13
billion years

IMPOSSIBLE



The Etymology of The Etymology of ““Monte CarloMonte Carlo””

Principality of Monaco (~ 1 mile2 - UM)

Famous for casinos, Formula-1 races, royalty

Random numbers



The Ubiquity of Monte CarloThe Ubiquity of Monte Carlo…… Random Examples Random Examples

Finance and
Social Sciences

Chip Design and Newpaper Panels

“floorplanning”



Broadly SpeakingBroadly Speaking……

Monte Carlo Simulation

i. Detailed balance

ii. Lot of algorithmic freedom

i. Detailed balance

ii. Kinetics (or Model)

iii. Trial Moves restricted to be local

Equilibrium Monte Carlo Kinetic or Dynamic Monte Carlo

today



The Tradition of Monte CarloThe Tradition of Monte Carlo

The Manhattan Project

Fermi

Ulam, Feynman, von Neumann

(1930-1950) various attempts



The Miracle of the Central Limit TheoremThe Miracle of the Central Limit Theorem

x1 = x1

p(x1)

x2 = +
2

p(xN)

xN

The probability distribution of the
average of independent random
variables becomes increasingly
Gaussian and increasingly narrower

sigma ~ 1/sqrt(N)

p(x2)

x2



ChildrenChildren’’s game in Monacos game in Monaco

bench

be
nc

h

a=50 ft

bench

benchMathematically oriented kids
of Monaco want to find the
“pi”

Nred/(Nred+Nblue)

= Acir/Asq

=pi*(a/2)2/a2

= pi/4

pi = 4 * Nred/(Nred+Nblue)

N = Nred + Nblue
Here, pi = 4 *10/13 ~ 3.08 



ChildrenChildren’’s game in Monacos game in Monaco

N = Nred + Nblue

es
tim
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e 
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 “p
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The invisible hand of the CLT operates to ensure that we converge to the true value of “pi” as
the number of rocks thrown is increased. “Error” vanishes as 1/sqrt(N)



Older peopleOlder people’’s game in Monacos game in Monaco

a=1 mile

500 ft

plant flags on a helipad

pi = 4 * Nred/(Nred+Nblue)

“Time” spent planting flags in the
circular region is proportional to the
area of the circle

CHOICES
(i) Move to “B”. Plant a gray flag. Continue

throwing.
(ii) Stay at “A”. Don’t plant flag. Throw again.
(iii) Stay at “A”. Plant a flag. Continue

throwing.

Many MC simulations are wrong
because they make the wrong choice.

Condition of Detailed Balance will give us sound advice.

B

A



Some ConceptsSome Concepts

KID’S GAME OLDER PEOPLE’S VERSION

Each sample (place where throw
lands) independent

Direct Sampling

Converges faster (Think CLT, think
independent samples)

Sample dependent on previous
position (is within radius of 500ft)

Markov-chain Sampling

Need more throws (samples) to
attain same level of accuracy

May not be feasible for
realistic problems!



Coins in a Shoebox ProblemCoins in a Shoebox Problem

Q: How do you generate random configurations
of coins such that they don’t overlap?

Direct Sampling Markov-chain Sampling

Random Sequential Depositon (?)

WRONG!

phiRSD < phiCP

Physicists (since 1953) haven’t
found a direct sampling algorithm

Start with a legit configuration

Trial: Move a randomly chosen coin just
a little in a randomly chosen direction

Overlap?

noyes

Reject move Enact move



So farSo far……

Central Limit Theorem: The Engine

Sampling: How do I generate trials?

Direct Sampling Markov Chain Sampling
Kid’s game, better, not always possible Older people’s game, more common

Coin in a shoe-box problem

Unsolved Mystery: What should you do if you throw the stone out of bounds in the adults’
game? Tricky question, full of consequences for world peace and prosperity. We said
upcoming “condition of detailed balance” will resolve it.



Scrambling GameScrambling Game

Objective: Create a perfect scrambling algorithm such that
any possible configuration of the puzzle is generated with
equal probability

Toddler’s algorithm

Rip the whole thing apart

Put it back together

“equilibrium” where
each state is equi-
probable.



Scrambling GameScrambling Game

Older People Version

Choose central square to go (N, E, W, S) each with
probability ¼ (which is indeed correct)

Move the empty square in a random direction, each timestep
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Scrambling GameScrambling Game

536
71

824

a
536
71
824

36
571
824

536
871

24
b

c

d

1/3?

1/3?

1/3?

F(a) = F(b) = F(c) = F(d) : at “equilibrium”

F(a)  = F(a) p(a→a) + F(b) p(b→a) +
F(c) p(c→a) + F(d) p(d→a)

p(a→a) + p(a→b) + p(a→c) + p(a→d) = 1

[1- p(a→a) ]F(a)  =  F(b) p(b→a) +
F(c) p(c→a) + F(d) p(d→a)

p(a→b) + p(a→c) + p(a→d) = 1 - p(a→a)

[p(a→b) + p(a→c) + p(a→d) ]F(a)  = F(b)p(b→a) + F(c) p(c→a) + F(d) p(d→a)



Scrambling GameScrambling Game

[p(a→b) + p(a→c) + p(a→d) ]F(a)  = F(b)p(b→a) + F(c) p(c→a) + F(d) p(d→a)

Impose a condition that terms of the same color on either side of the “=“ are equal

F(a) p(a→b)   = F(b) p(b→a)
F(a) p(a→c)   = F(c) p(c→a)
F(a) p(a→d)   = F(d) p(d→a)

This “recipe” for satisfying equation (A) is called the condition of detailed balance

Sufficient, but not necessary condition

F(a) p(a→b) +  F(b) p(b→a) +
F(a) p(a→c) +  = F(c) p(c→a) +
F(a) p(a→d) F(d) p(d→a)

(A)



Scrambling GameScrambling Game

Given: F(a) = F(c)

Look at one of these carefully,

p(a→c) =  p(c→a)
=  0.25 (not 1/3)

c a

p(a→c)/p(c→a)  =  F(c)/F(a)

536
71

824

536
71
824

0.25

Therefore algorithm is:

(i) Pick {N, E, W, S} with equal probability
(ii) Move blank square to corresponding direction, if possible. Otherwise,

stay where you are, reject the move, and advance the clock.



Older peopleOlder people’’s game in Monacos game in Monaco

a=1 mile

pi = 4 * Nred/(Nred+Nblue)

plant flags on a helipad“Time” spent planting flags in the
circular region is proportional to the
area of the circle

CHOICES

(i) Move to “B”. Plant a gray flag. Continue
throwing.

(ii) Stay at “A”. Don’t plant flag. Throw again.
(iii) Stay at “A”. Plant a flag. Continue

throwing.

Many MC simulations are wrong
because they make the wrong choice.

Condition of Detailed Balance will give us wise advice.

500 ft

B

A



Some More ConceptsSome More Concepts

This method of rejection has been enshrined into the “Metropolis Algorithm”

Concept of REJECTION arose from the condition of detailed balance

p(a→c)/p(c→a)  =  F(c)/F(a)

p(a→c) = min[ 1, F(c)/F(a)]

Boltzmann

Connection with Statistical Mechanics

F(c) = exp(-Uc/kBT)

p(a→c) = min[ 1, exp[-(Uc-Ua)/kBT]]



The Metropolis MethodThe Metropolis Method

THE JOURNAL OF CHEMICAL PHYSICS    VOLUME 21, NUMBER 6   JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois

(Received March 6, 1953)

    A general method, suitable for fast computing machines, for investigating such properties as equations
of state for substances consisting of interacting individual molecules is described.  The method consists
of a modified Monte Carlo integration over configuration space.  Results for the two-dimensional rigid-
sphere  system have been obtained on the Los Alamos MANIAC and are presented here.  These results
are compared to the free volume equation of state and to a four-term virial coefficient expansion.

1087

(over 7500 citations between 1988-2003)

Nicholas Metropolis with the MANIAC



Back toBack to  Statistical MechanicsStatistical Mechanics
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This function is
sharply peaked.

Observation 1It may be possible to
compute <A> without
evaluating ZN?

Observation 2

In the area of the circle problem, we evaluated an area (like a
partition function), and the probability distribution was uniform
(obs 1 and 2 inapplicable).

In the scramble problem, the probability distribution was
uniform (obs 1 inapplicable)



Back toBack to  Statistical MechanicsStatistical Mechanics
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Metropolis helps us generate new microstates with the appropriate
probability. Thus a simple average over all the microstates gives us <A>

Samples the important region of phase space



• Eigenvector equation for limiting distribution
–

• A sufficient (but not necessary) condition for solution is
–
– “detailed balance” or “microscopic reversibility”

• Thus
–

Detailed Balance
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always possible to satisfy
detailed balance; e.g. for this
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Tutorial: Tutorial: Ising Ising ModelModel

1924: Ising solved 1D
1944: Onsager solved 2D

Simple model for understanding magnetism

Unpaired electrons =
origin of magnetismFerromagnets: Fe, Ni - magnetic even in the absence of

an electric field

Paramagnets: Al, Ba - magnetic only in the presence of an
electric field

Up-state Down state



Tutorial:Tutorial:  Ising Ising ModelModel

(a) Energy

! 

E({"}) = #J " i" j$

(b) Magnetization

! 

M({"}) =
"
i#

N



Tutorial: Markov ChainsTutorial: Markov Chains



Tutorial: Markov ChainsTutorial: Markov Chains


