Dynamics of Ring-Linear Blends

Gopinath Subramanian and Sachin Shanbhag

Department of Scientific Computing Chemical and Biomedical Engineering, Florida State University

ICR Meeting, Aug 2008

Linear and Ring Polymers

Ring (or cyclic) molecules do not have chain ends

Linear and Ring Polymers

- Rings are less viscous, diffuse faster
- Dynamics of rings are extremely sensitive to linear contaminants
- Older data: linear contamination, knotting, concatenation

Linear and Ring Polymers

• Rings are less viscous, diffuse faster

• Dynamics of rings are extremely sensitive to linear contaminants

• Older data: linear contamination, knotting, concatenation

Rings behave differently

Robertson and Smith, Macromolecules, 2007

Measure self-diffusivity of tracer DNA (ring or linear) in a matrix (ring or linear)

From top to bottom R-R, L-R, L-L and R-L

Rings behave differently

Kapnistos et al., SoR, 2006

1% linear fraction make the LVE response look like linear melt

McKenna and Plazek, 1986 had already reported this extreme sensitivity

Ring-Linear Blends

The idea is to use simulations to study the composition range between pure linear and pure ring polymers

Simulation System

- Non-catenated rings melts are hard to simulate using MD
- With BFM, a brute force equilibration is feasible

Procedure

- 1. $N_{C} = N_{L} = 150$ and $N_{C} = N_{L} = 300$
- $4. \quad \phi = \phi_{\rm C} + \phi_{\rm L} = 0.5$
- 3. NVT Ensemble: constant density
- 4. Equilibrate, and do primitive path analysis, using annealing

lyer et al., *Macromolecules*, **2007** Geyler and Pakula, *Macromolecules*, **1988**, Shanbhag and Larson, *PRL*, **2005**

Bond Fluctuation Model

Efficient equilibration of chains

Shaffer, J. Chem Phys., 1994

Older Results: Size

lyer et al., Macromolecules, 2007

Scaling model to describe the effect of concatenation.

- Rings shrink as the fraction of rings in a ring-linear blend increases
- Linears are insensitive to blend composition

Statics Results: Primitive Path Analysis

Subramanian and Shanbhag, PRE, 2008

For, N = 300

* the linear chain is unaffected by ϕ_{I}

* a pure ring melt has no entanglements

* as the linear fraction increases, the number of entanglements increases

Statics Results

Sub ramanian and Shanb hag, *Macromolecules* **2008** (accepted)

Dynamics Results

- $\bullet \text{ as } \varphi_L \uparrow, \, D_C, \, D_L \downarrow$
- $D_C \downarrow$ more steep

• qualitatively consistent with experimental data on entangled DNA solutions (1)

- PS rings-linear blends observe $D^{}_L$ is independent of $\varphi^{}_L(2)$

• this picture reconciles the discrepancy between the two data-sets (if rings contaminated by linears)

2. Tead et al., *Macromolecules*, **1992**.

^{1.} Robertson and Smith, Macromolecules, 2007.

ring-linear blend

PPA: threading of rings by linears

Review: Minimal CR Model

Linears pin down the cyclic polymer

Release and reform entanglements: Constraint Release Rouse Process

Mean lifetime of the effective Rouse bead is the reptation time, which sets the "hopping" time for CRR.

The diffusion of a ring in a blend is thus retarded by the linear constraints

$$\frac{1}{D_C(\phi_L)} = \frac{1}{D_C(\phi_L = 0)} + \frac{1}{D_{CR}(\phi_L)}$$

A ring will diffuse (by CRR) only after the linear constraints have been renewed several times

$$\frac{1}{D_C(\phi_L)} = \frac{1}{D_C(\phi_L = 0)} + \frac{1}{D_{CR}(\phi_L)}$$

Very different from:

- (a) CRR models for binary blends of linear molecules Rubinstein and Colby, *Macromolecules*, **1988**
- (b) Models for ring diffusion Klein, *Macromolecules*, **1986**

FASTER PROCESS DETERMINES DYNAMICS

$$\frac{1}{D_C(\phi_L)} = \frac{1}{D_C(\phi_L = 0)} + \frac{1}{D_{CR}(\phi_L)}$$
$$\tau_L(\phi_L) = \frac{R_L^2(\phi_L)}{D_L(\phi_L)};$$
$$D_{CR}(\phi_L) = \frac{kT}{\zeta Z_C} \approx \frac{1}{\tau_L(\phi_L)Z_C(\phi_L)}$$

$$Z_{C} \frac{D_{C}(\phi_{L} = 0)}{D_{L}(\phi_{L})} = c_{1} \frac{D_{C}(\phi_{L} = 0)}{D_{C}(\phi_{L})} + c_{2}$$

can be tested on our simulation data

All Together

Entangled DNA (Robertson and Smith, 2007)

* Tracer Ring in Linears * $Z_C = Z_L = (I/I_0)(c/c_0)^{4/3}$ * $I_0=3$ kbp when $c_0=1$ mg/ml

$$Z_{C} \frac{D_{C}(\phi_{L} = 0)}{D_{L}(\phi_{L})} = c_{1} \frac{D_{C}(\phi_{L} = 0)}{D_{C}(\phi_{L})} + c_{2}$$

Summary

- 1. Primitive path analysis: extent threading of rings by linears
- 2. Self-diffusion coefficients: how dynamics are influenced by linears
- 3. Minimal CRR model to put (1) and (2) together
- 4. The CRR model appears to unify simulation and experimental data over a wide range of MWs, concentrations, and blend compositions.
- 5. Ring-linear blends may be model systems to learn about constraint release!

Acknowledgements

- Petroleum Research Fund (ing)
- Rae Robertson and Doug Smith (experimental data)
- Richard Graham and Jorge Ramirez (CRR model)
- Ashish Lele and Balaji lyer
- Florida State University: HPC Center