Analytical Rheology

Linear Viscoelasticity of Model and Commercial Long-Chain-Branched Polymer Melts

Sachin Shanbhag, Seung Joon Park, Qiang Zhou and Ronald G. Larson

Chemical Engineering, University of Michigan

Motivation

linear

Long Chain Branching

LCB > 100 C-atoms

In LDPE ~ 10 LCB/1000 backbone carbon atoms

Polyethylene and polypropylene > 50% of the total synthetic polymer produced world-wide.

Motivation

✤ LDPE: strain hardening, shear thinning

Wood-Adams and Dealy, Macromolecules 2000

Analytical Rheology of Long-Chain Branched Polyethylenes

- spectroscopy, chromatography
- rheology is sensitive
- need accurate rheological models of branched

structures

metallocene catalysts

Polymer solutions/melts are viscoelastic

Elastic Recoil

http://burghdt3.chem-eng.northwestern.edu

Entangled Polymer Melts

UNENTANGLED

ENTANGLED

http://zeus.plmsc.psu.edu/~manias

Linear Viscoelasticity

Relaxation Modulus

 $G(t) = \sigma(t)/\gamma_0$

Long Chain Branching

The Tube Model

The Tube Model

courtesy: Richard Graham

The Tube Model

courtesy: Richard Graham

Stress Relaxation

Relaxation Modulus

 $G(t) = \sigma(t)/\gamma_0$

 $\tau_{\text{linear}} \sim M^{3.4}$

 $\tau_{arm} \thicksim exp(M)$

Reptation

courtesy: IRC Leeds

Arm Retraction

courtesy: IRC Leeds

Third Mode: Constraint Release

A = test chain B, C, D = matrix chains

Equations for Monodisperse Stars

Ball and McLeish, *Macromolecules*, **1989** Milner and McLeish, *Macromolecules*, **1997** Milner and McLeish, *Macromolecules*, **1998**

Theories for Branched Polymers

- Star polymer
 - Milner and McLeish, Macromolecules (1997)
- Linear polymer
 - Milner and McLeish, Phys Rev Lett (1998)
- Star/linear blend
 - Milner et al., Macromolecules (1998)
- H polymer
 - McLeish et al., Macromolecules (1999)
- Comb polymer
 - Daniels et al., Macromolecules (2001)
- Mixture of general branched polymers
 - Larson, Macromolecules (2001): hierarchical model

Park, Shanbhag, Larson, *Rheol. Acta.*, **2005** Larson, *Macromolecules*, **2001**

Successes of the Tube Theory: Preview

Laun/Schmidt Benchmark Experiment

Analytical Rheology of Commercial Linear Polymers

Polystyrene samples from Dr. Christian Schade, BASF

Successes of the Tube Theory: Preview

Overview on moduli predictions for PS2

Successes of the Tube Theory

Polydisperse polystyrene, Graessley and coworkers (lines theory of Pattamaprom, et al.)

Determination of Model Parameters (1,4-PBd)

 $G_N=1.15E+6$ (Pa), $M_e=1650$, $\tau_e=3.7E-7$ (sec)

zero-shear viscosity of linear 1,4-polybutadiene at T=25 °C

zero-shear viscosity of star 1,4polybutadiene at T=25 °C

a = 4/3

Determination of Model Parameters (PI)

 $G_N=0.44E+6$ (Pa), $M_e=4054$, $\tau_e=1.0E-5$ (sec)

Constraint release is by CR-Rouse motion

PBd linear (M_1 =37K)/linear (M_2 =168K) blend at T=25°C

PBd 3-arm star (M=127K)/linear (M=100K) blend at T=25°C

$$Gr = M_2 M_e^2 / M_1^3 = 0.01 < Gr_c = 0.064$$

Struglinski et al., Macromolecules, 1985

Struglinski et al., Macromolecules, 1988

Park, Shanbhag, Larson, Rheol. Acta., 2005

φ_s=1.0

φ_=0.75

φ_s=0.5 φ_s=0.2

10²

Star/Linear Blends

PBd 3-arm star (127K) - linear blends at T=25 °C

Struglinski et al., Macromolecules, 1988

Multiple Side Branches

Relaxation of backbone requires motion of branch points

Ma=20000, Mb=110000 Pl_a=1.01, Pl_b=1.13

Ma=40000, Mb=164000 Pl_a=1.05, Pl_b=1.30

We take $D_{br} = p^2 a^2/2qt_a$, with $p^2 = 1/12$

Park, Shanbhag, Larson, *Rheol. Acta.*, **2005** McLeish et al., *Macromolecules*, **1999**

Commercial Single-Site Metallocenes

propagation probability

monomer selection probability

Costeux et al., Macromolecules, 2002

Lightly-branched metallocenecatalyzed HDPEs

resin	Mw	Mn	λ (=LCB/1000C)	β	рр	lp
HDL1	93000	44700	0	0	0.999398	1
HDB1	77000	38900	0.026	0.067	0.999172	0.999948
HDB2	82000	42590	0.037	0.099	0.999179	0.999926
HDB3	86000	43200	0.042	0.116	0.999192	0.999916

 λ : average branch point density per 1000C

$$\lambda = \frac{14 \times 10^3 (2\beta)(\beta + 1)}{M_w} = \frac{10^3}{2} pp(1 - lp)$$

 β : average number of branches per molecule

$$\beta = \frac{M_n \lambda}{14 \times 10^3} = \frac{pp(1-lp)}{1-2pp + pp \times lp}$$

LCB mHDPE is a mixture of linear, star, Hpolymers, combs, and hyper-branched structures

Metallocene-catalyzed polyethylene

 G_N =2.0E+6 (Pa), M_e =1150, τ_e =4.0E-9 (s) at T=150 °C

10,000 chains in the ensemble

Wood-Adams et al., *Macromolecules*, **2002** Park and Larson, *J. Rheol.*, **2005**

Metallocene-catalyzed polyethylene

G_N=2.0E+6 (Pa), M_e=1150, τ_e =4.0E-9 (s) at T=150 ^oC

Wood-Adams et al., Macromolecules, 2002

Park and Larson, J. Rheol., 2005

Daniels et al., *Macromolecules*, **2001** Park, Shanbhag, Larson, *Rheol. Acta*, **2005** For calculations with polydispersity, to obtain an ensemble of chains, polydisperse arms are randomly attached to polydisperse backbones via a Poisson process.

Test of Dynamic Dilution

Linear-Linear Binary Blend with Large Molecular Weight Ratio

Blend of monodisperse 1,4 PBd: 20k/550k Gr = $M_2 M_e^2 / M_1^3 = 0.16 > Gr_c = 0.064$

a = 4/3

Solid lines: reptation in fat tube

Limitations of the Tube Theory

Issues for Tube Theory with LCB

- Dynamic Tube Dilution
- Branch Point Motion
- Fluctuation Potential
- Nature of entanglement network, dilution exponent

Need insights from more detailed models

•

Entanglement Bond-Fluctutation Model

"Monomer"

Shanbhag et al., *PRL*, Shanbhag and Larson, *Macromolecules*, Shanbhag and Larson, *PRL*, Shanbhag and Larson, *Macromolecules*,

Primitive Path

Primitive Path

Length of the primitive path is shorter from the length of the polymer chain

Primitive Path in a Melt

Polymer chains themselves form obstacles for other chains

- Obstacles are not "fixed"
- Outstanding problem in polymer physics, until recently (?)

Primitive Path in a Melt

Bond Fluctuation Model

Efficient equilibration of chains

Primitive Path

Extract the primitive paths

Shanbhag and Larson, *PRL*, **2005** Shaffer, *J. Chem Phys.*, **1994** Everaers et al., *Science*, **2004**

Locating Entanglement Points

How do I spatially locate entanglements on a primitive path?

Z = 2 entanglements

Shanbhag and Larson, Macromolecules, 2006

"if an entanglement is released, how many additional entanglements are lost as a consequence?"

"binary coupling"*

related to dilution exponent $\alpha = \langle Z_{lost}/Z_{del} \rangle$ $\alpha = 1$ for binary coupling

*assumed in slip link models

completely unravels

"1 entanglement releases 3 entanglements"

N=300, N_p~300 L_{box}=65, Φ =0.5

Everaers et al., Science, 2004

Statistically run through all the chains

dilution exponent $\alpha = \langle Z_{lost}/Z_{del} \rangle = 1.03$

- supports the notion that entanglements are binary-contacts
- justifies the assumption made in slip link models
- implies that α = 4/3, which works best with the tube model, and the "true" value of α may be different

Shanbhag and Larson, *Macromolecules*, **2006** Shanbhag et al., *PRL*, **2001**

Summary

Advances in catalyst technology (metallocene) allow us much greater control over branching details.

There is a need to understand the rheology of branched polymers because rheology is the most sensitive probe of molecular architecture.

The analytical tube model needs significant revision to address branched polymers, and needs help from detailed simulations.

Acknowledgements

Comparison: Milner-McLeish model and the hierarchical model

zero-shear viscosity of star 1,4-

Comparison with Standard Method

