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INTRODUCTION

Systems of linear algebraic equations with a periodic pentadiagonal matrix often occur when
solving partial differential equations in meteorology and oceanography, as well as in numerical
analysis. Their appearance is typically connected with the approximation of fourth-order finite
differencing of differential equations subject to periodic boundary conditions, data smoothing by
cubic splines, use of generalized splines, etc. In our particular case, solution of the shallow-water
equations by means of a finite element two-stage Numerov-Galerkin method requires the numerical
solution of cyclic pentadiagonal systems when approximating the first derivative by a generalized
spline.*'* In this application, we generalized the approach of Ahlberg et al.! for a cyclic pen-
tadiagonal matrix.

While work on cyclic tridiagonal systems has been carried out by several researchers (see, for
instance, References 2, 6-8, 10 and 15), cyclic pentadiagonal systems for non-symmetric matrices
have been treated by Benson and Evans'® for positive definite symmetric systems by Benson and
Evans'? following Cuthill and Varga.?® Solutions for regular pentadiagonal systems have been
proposed by Von Rosenberg” and have been also treated by general real band linear equations
solvers of the NAG' scientific library (routine FO4LDF) Miklosko® proposed a method of shooting
for solving a pentadiagonal system of linear algebraic equations. For the same system Grund'?
proposed two methods—one direct and the other Gaussian—for finding the inverse of five-diagonal
matrices. A parallel algorithm for inverting pentadiagonal matrices was proposed by Cei et al.'!

In the present paper, we present the new algorithm employed for solving the cyclic pentadiagonal
system following a suggestion of Temperton® and document briefly a FORTRAN program which
implements the method. The new pentadiagonal algorithm is a generalization of the Ahlberg-
Nilson-Walsh method for cyclic tridiagonal systems and is applicable to general cyclic pentadiagonal
systems in which the matrix A is neither symmetric nor circulant. It seems to have a simpler form
than Algorithm 80 of Benson and Evans'® and is easily amenable to different applications. Our
main intention in this short paper is to present the new algorithm and its applications without
comparing it for accuracy and efficiency to existing periodic pentadiagonal algorithms. Two model
problems are presented, the first involving fourth-order finite difference approximations and the
second employing a high-order generalized spline of order O(h®) for the calculation of the first
derivative to illustrate and verify the correctness of the FORTRAN routine given in Appendix 1.

THE CYCLIC PENTADIAGONAL ALGORITHM

The general form of the cyclic pentadiagonal matrix system is
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Following Ahlberg et al.," we split matrix A into a pure (n—2 x n—2) pentadiagonal matrix E by
deleting the last 2 rows and last 2 columns of A:
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and let X be the (n—2) unknown vector
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d is the corresponding (n—2) right-hand-side vector (6), while g, and f, represent the effects of
periodicity terms at the lower left-hand side and upper right-hand side of the original cyclic
pentadiagonal matrix. We then obtain that the system (1) can be rewritten as

EX+f, [;"] =d (5)
e [ %) -[%] ®
We have also
¢f+[d;;‘]=d (7
From (5) we obtain
g=£d- 5] ®)

and if we substitute (8) into (6) we obtain

wedsteon [ )= ] g
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or
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which finally permits us to obtain the two components of the unknown vector X explicitly
as
> Nl | [ | e (gl | | 5 (SO
[ Xn ]_{[bf] gtlE fn} dn gnE d (11)

Algorithmic implementation

n—1
X,
and we employ the pentadiagonal solver due to Von Rosenberg.” We then calculate first E~'f,
by calling the subroutine PENTDG, implementing the usual pentadiagonal solver. We then calculate
E~'d and finally the values of the right-hand-side bracketed expression in (11). We then proceed
to calculate the explicit inverse of the first bracketed expression in (11), i.e.

{[be]-ere-nf” (12)

by using Cramer’s rules and having already calculated the expression for gTE~'f,,.

The sought values of X,,_, and X,, can then be calculated. The algorithm developed is valid for
a general pentadiagonal matrix, but it was implemented with a symmetric cyclic pentadiagonal
matrix.

When the matrix E is neither positive definite nor diagonally dominant, one can use the
general band solver performing an L U decomposition into triangular matrices—for instance routine
FO4LDF of NAG' scientific library. For further references see Wilkinson and Reinsch.!”

To solve equation (10) for [ ] we need a usual pentadiagonal solver of size (n—2)x(n—2)

NUMERICAL APPLICATIONS

The program PENT has been applied towards the numerical solutions of the simple following
linear ordinary differential equation:?
f(x) + f(x) = (1-474)sin(2mx) 0=X=<1 (13)

Subject to periodic boundary conditions

f(1) =£(0) (14)
f(=h) =f(1-h)
where h = Ax is the spacer grid size and
h= 11\—] (15)
whose exact solution is
f(x) = sin(2mx) (16)

allowing therefore an easy accuracy comparison and an adequate test for first-time users.
Using a fourth-order finite difference approximation for the second derivative, i.e.

f =::_;{ = (fi—2 + 16f,_, — 30f; + 16f;, — fi+2)/12h? (17)

(see, for instance, Reference 3) we obtain the following cyclic (periodic) pentadiagonal system of
order N:
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i
The solution vector provides the grid-point values for equation (1). One can calculate in this case

the average truncation errors for the numerical solution (see Reference 2) of f, by

€= [gjl If - sin(Zn{I—l)h]]/N (19)

The errors for finer and finer meshes as N increases should vanish proportionally to A*. The values
are displayed in Table I, and indeed they appear to decrease proportionally to h* thus verifying
the correctness of our routine PENT. In another application,* a generalized spline application
giving a high-order approximation of order O(h®) to the first derivative du/dx is'

1 |[ou ou du ou ou
oG 16+ %) sl + (3L

- 8%1 [=Stp_s = 320y + 32ups + Stizr2] + O(H) 20)
This is an implicit finite difference approximation to d/dx having a better resolving power than its
spline counterpart of the same bandwidth.'#
Using again u=sin(27x), 0=x=<1, we obtain the following cyclic pentadiagonal matrix:
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Here the solution is

ou (U
e =0 = 2mcos(2mx), f'; = (ax), (23)
and the error is given as
N
€ =| D |f; — 2mcos(2m(i—1)h)| } / N (24)
i=1

A test was carried out and indeed the errors decrease as h® for finer and finer meshes as N
increases, and indeed we obtain a decrease of 2% = 256 in the error. As the accuracy on the CDC-
205 started to deteriorate in single precision around 107'*~107'%, a double precision routine
PENT1 was written for the calculation of du/dx with the O(h®) generalized spline.

Table I
N 20 40 80 160 320
€ 0-695E—4 0-434E—-5 0:276 E—6 0-172E-7 0-107E-8
€5Gs 0-87013E—8 0-33711E-10 0-13141E-12 0-51307E-15 0-20039E-17

Not only is this very high-order implicit centred difference scheme highly accurate with a
truncation error O(h*") and bandwidth 2m+1, but its phase error is

€,(N,m) = 27{1-b,,(0)/[iba, 0)]} (25)
where
0= 2nwh = 2n/N (26)
N being the nmber of intervals per wavelength given by
N = (wh)™! (27)
and
b,.(0)/a,,(6) = isinfg,, [sin*(6/2)] (28)

where g, is the truncation error of a continued fraction approximation of arc sin(y)/yV1—+?).

So, as a by-product of the periodic pentadiagonal solver a double-precision routine for high-
accuracy calculation of the first derivative to O(h®) is also provided. The complete computer
programs and results are available upon request.
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APPENDIX I

PROGRAM PENT (INPUT,OUTPUT, TAPE3=0UTPUT)
CesssTHE FOLLOWING PROGRAM SOLVES A PERIODIC PENTADIAGONAL SYSTEM OF es
Ceses | INEAR EQUATIONS OF DIMENSION NX.
CeeesTHE COEFFICIENTS ARE A(I-2),B(I1-1),C(I)AND IN OUR EXAMPLE THE se
CesesPENTADIAGONAL MATRIX IS SYMMETRIC,BUT THE PROGRAM CAN SOLVE A GENss
CesssNERAL CYCLIC PENTADIAGONAL SYSTEM.
CesseTHE R.H.S. 1S GIVEN IN THE D ARRAY.THE SOLUTION ARRAY IS RETURNEDes
CesssIN THE Z(NX) ARRAY.THE METHOD USED IS A GENERALIZATION OF THE
Ceees AHLBERG,NILSON AND WALSH ALGORITHM.WE USE VON ROSENBERG'S
CeeesMETHOD FOR THE (N-2)X(N-2) PENTADIAGONAL MATRIX.

PARAMETER (NX=168 ,NXP1=161)

DIMENSION D(NXP1),Z(NX),TMP(NX),V(NX) ,W(NX,2) ,FN(NX)

Pl=2.+ASIN(1.0)

DX=1./FLOAT(NX)
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Ces+sCOEFFICIENTS OF SPECIFIC PROBLEM-FOURTH ORDER FINITE-DIFFERENCE
Ceses APPROXIMATION TO THE SECOND DERIVATIVE.
A=-1./12.
B=16./12.
C=(-30./12.4DXss2)
NX1=NX—1
NX2=NX-2
NX3=NX-3
NX4=NX—-4
c CALCULATE W=E( INVERSE)FN
c FIRST COLUMN
DO 1 I=2,NX4
1 FN(I;-B.
FN(1)=A
FN(NX3)=A
FN(NX2)=B
CALL PENTDG(TMP,FN,NX2,DX)
DO 2 I=1,NX2
W(I,1)=TMP(1)
SECOND COLUMN
2 W(I1,2)=TMP(NX1-1)
Cc CALCULATE V=E(INVERSE)D
NP 1=NX+1
DO 181 I=1,NP1
D(1)=DXes2e(1.~4 ePles2)sSIN(2.¢Ple(1-1)=DX)
181  CONTINUE
CALL PENTDG(V,D,NX2,DX)
GW11=AsW(1,1)+AsW(NX3, 1)+BeW(NX2, 1)
GW12=AsW(1,2)+A«W(NX3,62)+BsW(NX2,62)
GW21-B¢W(1,1;+AOW 2.13+A-W(NX2.1)
GW22=BeW(1,2)+AsW(2,2)+AsW(NX2,2)
GV1-A-VE1)+A-VENX3)+BOV(NX2)
GV2=BsV(1)+AsV(2)+AsV(NX2)
DMGV 1=D(NX1)—GV1
DMGV2=D (NX )~-GV2
C11=C-GW11
C12=B-GW12
C21=B—CwW21
C22=C-GW22
CDET=C11sC22-C12+C21
C111=C22/CDET
Cl12-(-012§/CDET
Cl21=(—-C21)/CDET
C122=C11/CDET
Z(NX1)=CI11+DMGV14C112+DMGV2
Z(NX)=C121DMGV1+C122«DMGV2
DO 5 I=1,NX2
WZ=W(1,1)sZ(NX1)+W(1,2)Z(NX)
5 Z(1)=v(1)-wz
SUM=0. @
CeeeeCALCULATION OF TRUNCATION ERROR AS DIFFERENCE BETWEEN NUMERICAL
CesseAND ANALYTIC SOLUTIONS.
DO 102 I=1,NX

SUM=SUM+ABS (Z(1)-SIN(2.+PIs(1-1)+DX))

182 CONTINUE

CeesAVERAGE TRUNCATION ERROR.

SUM=SUM/NX
PRINT 998,SUM

998 FORMAT(5X, 'EPS=',E12.5)
PRINT 999, (Z(I),1=1,NX)

999 FORMAT(1X,5E12.5/)
RETURN
END

SUBROUTINE PENTDG (U, F ,NX,DX)

DIMENSION U(NX),F(NX)

REAL DEL(16@),LAM(16@),GAM(160) ,MU
SUBROUTINE PENTDG SOLVES THE EQUATIONS
AsU(1-2)+BsU(I1-1)4Ce(1)+De (1+1)+E«(1+2)=F (1)
FOR 1.LE.I.LE.NX
WITH A=@ FOR I=1 AND I=2

B=d FOR I=1
D=0 FOR I=NX
E=® FOR I=(NX-1) AND I=NX

o000 0O00

Ceee«COEFFICIENTS FOR FOUTRH ORDER FINITE DIFFERNCE APPROXIMATION TO
Cesss SECOND ORDER DERIVATIVE.

A=1./12.

B=16./12.

C=(-30./12.4DXes2)

D=8

E=A
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NX 1=NX~1
NX2=NX-2
NX3=NX-3
c 1=1
DEL(1)=D/C
LAM(1)=E/C
GAM(1)=F(1)/C
1=2

MU=C-B+DEL(1)
DEL(2)=(D-BeLAM(1))/MU
LAM(2)=E/MU
GAM(2)=(F(2)-B*GAM(1))/MU
c 3.LE.I1.LE. (NX=2)
DO 1 I=3 Nx2
BETA=B-A+DEL(1-2)
MU=C—BETADEL(1-1)—A*LAM(1-2)
DEL(I;-(D—BETAOLAM(I—1))/MU
LAM( 1)=E/MU
GAM(1)=(F(1)-BETAGAM(I-1)-A«GAM(1-2))/MU
1 CONTINUE
c I=NX-1
BETA=B-A«DEL (NX3)
MU=C-BETADEL(NX2)—AeLAM(NX3)
DEL(NX1)=(D-BETA«LAM(NX2) ) /MU
GAM(NX1)=(F(NX1)—BETA«GAM(NX2)—-AsGAM(NX3) ) /MU
c I=NX
BETA=B-A«DEL(NX2)
MU=C—BETAsDEL(NX1)—AsLAM(NX2)
GAM(NX)=(F(NX)-BETAsGAM(NX1)-AsGAM(NX2)) /MU
c BACK SOLUTION
U(NX)=GAM(NX)
U(NX1)=GAM(NX1)-DEL(NX1)*U(NX)
DO 2 J=1,NX2
[=NX1-J
U(1)=GAM(1)-DEL(1)eU(1+1)-LAM(1)eU(1+2)
2 CONTINUE
RETURN
END
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