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ABSTRACT

An alternating-direction implicit finite-difference scheme is developed for solving the nonlinear shallow-
water equations in conservation-law form.

The algorithm is second-order time accurate, while fourth-order compact differencing is implemented
in a spatially factored form. The application of the higher order compact Padé differencing scheme
requires only the solution of either block-tridiagonal or cyclic block-tridiagonal coefficient matrices, and
thus permits the use of economical block-tridiagonal algorithms. The integral invariants of the shallow-
water equations, i.e., mass, total energy and enstrophy, are well conserved during the numerical inte-
gration, ensuring that a realistic nonlinear structure is obtained.

Largely in an experimental way, two methods are investigated for determining stable approximations
for the extraneous boundary conditions required by the fourth-order method. In both methods, third-order
uncentered differences at the boundaries are utilized, and both preserve the overall fourth-order con-
vergence rate of the more accurate interior approximation.

A fourth-order dissipative term was added to the equations to overcome the increased aliasing due to
the fourth-order method. Alternatively, Wallington and Shapiro low-pass filters were applied.

The numerical integration of the shallow-water equations is performed in a channel corresponding to

a middle-latitude band. A linearized version of this method is shown to be unconditionally stable.

1. Introduction

We consider the application of implicit fourth-
order compact finite-difference schemes for solving
numerically the nonlinear shallow-water equations
in conservation-law form:

9U | 9P | 4Q(U)
ot ox

-fRAO) =0, (1

where U is an unknown p-component vector and P,
Q and R are given vector-valued functions of the
components of U.

We confine attention to the case of two spatial
dimensions. Recently, motivated by a suggestion of
Kreiss (Orszag and Israeli, 1974), several higher
order finite-difference schemes with similar proper-
ties have been developed by a number of in-
vestigators.

In all these methods both the functions and their
derivatives are considered unknown at several grid
points or the function values are collocated at
several grid points (usually three) instead of at
just one.

Historically these methods may be traced back to
Numerov (1924, 1927) and Fox and Goodwin (1949),
who used them in the numerical integration of
ordinary differential equations. These methods have
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been termed Hermitian finite differences by Collatz
(1960), Adam (1975) and Peters (1974); Padé dif-
ferencing approximations by Beam and Warming
(1976) and Lomax (1976); high-order compact dif-
ferencing by Hirsch (1975), Ciment and Leventhal
(1975), Ciment et al. (1978) and Wirtz et al. (1977);
fourth-order Mehrstellen by Krause et al. (1976) and
Kreiss and Oliger (1973); and fourth-order finite-
difference method by Orszag and Israeli (1974).
Rubin and Khosla (1976) and Rubin and Graves
(1975) have shown that the results obtained by
compact, fourth-order differencing approximations
can be recovered and improved by appropriate
fourth-order spline-on-spline methods.

Recently, following Peters (1974) and Swartz
(1974), Ciment and Leventhal (1978) and then
Ciment et al. (1978), a more general spatial ap-
proximation method was proposed, called the
operator-compact implicit method. In this method,
instead of setting up spatial approximations for
individual derivative terms, one poses the dif-
ference approximation in terms of the spatial
operator.

The connection between the compact implicit
methods and splines was also pointed out by Swartz
and Wendroff (1974) (see Appendix A). Usually
fourth-order methods require five-grid-point finite-
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difference expressions and cause the bandwidth of
the system of equations which are to be solved,
to increase and become pentadiagonal. In the
compact implicit fourth-order algorithm used in the
present investigation, the coefficient matrix remains
tridiagonal. Also the number of fictitious boundary
points is reduced.

In Section 2 of this paper, we present the system
of nonlinear shallow-water equations in conserva-
tion-law form, which leads to system (1). In Section
3 we obtain the second-order time-accurate, fac-
tored algorithm for system (1), and then the implicit
fourth-order form of the algorithm. It is shown that,
as opposed to the Eulerian gas dynamic equations
with a polytropic equation of state, for the shallow-
water equations the nonlinear functions P(U) and
Q(U) are not homogeneous functions of the com-
ponents of U. o ,

In Section 4 details are given of the computa-
tional procedure for solving the fourth-order com-
pact implicit shallow-water equations. Section 5 is
entirely devoted to the question of extraneous
boundary conditions (i.e., boundary conditions re-
quired by the fourth-order difference equations but
not by the differential equations). Two sets of
boundary conditions are compared experimentally,
while use is made of theoretical results due to Kreiss
(1970), Kreiss and Oliger (1972, 1973), Oliger (1974),
Gustafsson et al. (1972), Osher (1973, 1974) and
Skollermo (1975a, b).

Owing to the larger aliasing error inherent in the
fourth-order schemes (see Grammeltvedt, 1969;
Orszag, 1971), we found it necessary to add a fourth-
order dissipative term to control the increase of
small-scale energy. Details of the dissipative algo-
rithm are given in Section 6. Alternative low-pass
filters due to Wallington (1962), Shuman (1955) and
Shapiro (1970) are also discussed in that section.

In Section 7 a linearized stability analysis of the
algorithm is provided.

The numerical results of test calculations are
given in Section 8. The conservation of integral in-
variants of the shallow-water equations is discussed,
stressing the importance of enstrophy conservation
if the nonlinear structure of the equations is to be
correctly modeled. The accuracy of the fourth-order
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compact implicit shallow-water equations scheme is
then tested by using the same scheme with double-
mesh resolution in each horizontal direction and by
comparing it with a highly accurate nonlinear ADI
method due to Gustafsson (1971a).

It is expected that if this algorithm were tested in
a real numerical forecasting model, it would enable
low-pressure and high-pressure systems to be lo-
cated more accurately (see Navon and Alperson,
1978). »

2. The shallow-water equations

We consider the shallow-water equations, that is,
the primitive equations for an incompressible,
inviscid fluid with a free surface confined to a chan-
nel corresponding to a middle-latitude band. The
north and south boundaries are rigid walls, while
the flow is assumed to be periodic in the east—west
direction.

The beta plane approximation is made.

The basic nonlinear shallow-water equations in
Eulerian form are

du du du oh

— tUu—+v——fo+g—=0

ot ox ay ax
-Qv—+u—§£+v—a£+fu+g—ail—=0 2
ot ox ady ay

oh oh oh ou v

— u———+v————+h(——+—)=0

ot ox 0x ay

for a rectangular domain, 0 <sx <L, 0<y=<D,
t = 0. Variables are defined as follows:

x,y east-west and north—-south coordinates, re-

spectively

t time

u, v velocity components in the x and y directions,
respectively [u = u(x,y,t), v = v(x,y,)]

h depth of the fluid

g acceleration of gravity, constant

f Coriolis force [=f + B(y — D/2),f, B constant]

Following Houghton et al. (1966), one can write
(2) in conservation-law form (i.e., divergence
form) as

9 3 d : oh
— (ht) + — (hu®) + — (huv) + gh — ~ foh = 0
at(u) ™ (hu?) ay(uv) g = fo

d 8 9 oh
— (hv) + — (huv) + — (hv®) + gh — + fuh = 0 3)
6t(v) ax(u) P ) +8 o
oh @ ;)
bt (hw)+—(hv) =0
o ax(u) ay()
or in matrix form as
U 8P  4Q
4+ +-—<-fR=0, 4
ot ox ay f @
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where U, P, Q and R are the column matrices

BN -9 -
P M vsghe
h
v=| |, p= it ,
i ma
h
~h1 L. ’h -l

in whichm = hu,n = hv. We assume periodic solu-
tions in the x-direction, i.e.,

U(x,y,0) = U(x + L, y, 1). (6)
Then, with the boundary conditions
v(x,0,¢) = v(x,D,t) =0 @)
and the initial condition
U(x,y,0) = ¢(x,y), ®)
the total energy
1 L rD
. j J @ + 02 + ghhdxdy  (9)
2 0 Jo

is independent of time.
Also independent of time are the average values
of the height of the free surface

L D
J J hdxdy
- _ Jo Jo

h = —— (10)
[ J dxdy
0 Jo
and the enstrophy
q2
zZ- ” (I)dxdy, (1)
where
dv
g=<=-"=+f (11a)
ox

3. The basic algorithm
a. Time-differencing and linearization

Denoting by a superscript n the time level nAt,
where Ar is the time increment, we start by using

At a At
I —_—| —— (A" — (B yrtt —
R A T A

At

1+ 200 Ay + 2 e
S s e g e

2
In Eq. (18) and throughout the paper the notation

™ (19)

is used to denote

0 d
—(A") + — (B") |U*™
[ (a™) P ( )]
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r mAa ]
h "
= 2 R = . 5
Q % + Vagh? | ~m ©)
- ii - . O -

a trapezoidal time-differencing scheme (Beam and
Warming, 1976; Briley and McDonald, 1977):

At [(0U\"
Urtt = U + —[(—)
2 [\ o

aU n+1 5
+ (?) } + O(A®). (12)

If the scheme (12) is applied to (4), one obtains

Un+1 —_ Un — At I:( aQ _fR)
2 ox ay
aQ B n+1 5
+ (6_x + fR) } + O(AP). (13)
As

Pn+1 = P(Un+1) and Qn+1 —_ Q(Un+1) (14)

are nonlinear functions of U"*!, a linearization pro-
cedure (see Steger, 1978; Beam and Warming, 1976)
involving a local Taylor expansion about U»,
employed to overcome the nonlinearity of the
problem:

Pt = Pr 4 AU — U") + O(Ar2) } (15)
+ B(U™ — U") + O(A) ]

Qn+1 — Qn
where the matrices
oP 0
A=% 5.9 (16)
au’ ol
are Jacobian matrices with elements
P oP, a
(_) =% and (_Q) 9% g
ou/, aU, U/, U,

Substituting (15) into (13), a linear system for
U"*! is obtained:

OP _ 9Q\"  Ar
At( r» 5) S-SR (18)
nyJrn+1 6 nym+1

—Bx (A"U™1) + 5 BT (20)

and I is the unit matrix.
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b. The ADI factorization

As it stands, Eq. (18) seems to suggest that a
large number of operations are required to solve the
implicit equations. Clearly, if one could factor the
space-difference operators into separate spatial vari-
ables, instead of having to solve a formidable
matrix inversion problem, one would have only to
solve block-tridiagonal systems, using efficient solu-
tion algorithms. This significant improvement in ef-

At : +1
[I+T[-——(A )+E—(B )~ ]]U

At 0
1 ey n — n.
{+2[8 (A)+6y(B)+C”
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ficiency for multidimensional implicit methods is
achieved by using the alternating-direction implicit
(ADI) algorithm (see Douglas and Gunn, 1964). We
first note that in (18) the term fR can be written

7 0 f 0 m
fR=fl-m|l=1[f 0 0 (n = CU. 21
0 0 0 0/ \h
Therefore one can write (18) as
n _ — _@ 3
U At(ax + ay) + O(AP). (22)

The form of (22) suggests that we establish a factorizable term w1th1n the braces by adding the following

third-order perturbation terms:

Af3 (Ut — U AR 0 P ) ]
0y ———(A" )— (B"')——Z =——(A")— (B") — U" + O(A*)
4 ox dy At 4 ox dy ot :
3 n+1 __ yJIn 13
an AT’ coce T = U - . 54_ coee % U" + O(Ar)
3 +1 n [ ’ (23)
(I11) Ar 6 (An.)Cw)u
4 0x At
avy 222 guyew U U
4 oy ’ At ]
where
0 0 0 0 f O
C? = -f 0 0|, C?= 10 00 R (24)
0 00 0 00
. CY + C? = (. (25)
A scale analysis shows that the last three perturbation terms (II)-(IV) are of the order 1078, 10~ and

1074, respectively, compared with the magnitude of the first perturbation term (Typical magnitudes are
h —2000m u=30msL,v=5mstandf = 10"*s71).
The factored scheme can then be written as (see Appendix C)

At At
— | — (A" — CWV I - | — (B*) — C@ yntt
e gla e e S5 e - e

= [1 + ﬂ[ai (A™") + C“’”[I + %[5; ®") + c<2>“ — At (93 + %yq) . (26)

2

2

ax

A three-level centered-time scheme is also tested, constructed from the trapezoidal time-differencing
algorithm written over three time levels (n — 1, n, n + 1) (see Steger, 1978):

At At

2

| n —_ (1) 1 —} — (B" _C(Z) Un+1
- -efie g e -]

[I + —A—t—[— (A™) + C‘”“[ +
21 é

oP  9Q

_t_ n., (2) n—1 —_— —_
2[ B") + C ]]U At(a +ay). 27

29

dy

It is worthwhile mentioning at this point that owing to the presence of the term Y2gh? in the column
matrices P and Q, these are not homogeneous functions of degree 1 in the variables U;. Consequently,
the simplification obtained by Beam and Warming (1976) and Steger (1978) for the Euler equations of gas
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dynamics is not applicable here. (See also footnote in Beam and Warming, 1976, p. 95.) This can be
shown by calculating the products AU and BU and comparing the results with the column matrices P and
Q, respectively.

The Jacobian matrices A and B are given by

C2u 0 —u?+gh ] ,
A=1 v u —uv , (28)
[ 1 0 0
(v u —uv ]
B=|0 2v —-v*+gh |, (29
| 0 1 0 |
huv T A 0 |
h
—_— ~2 —
BU = hv? + gh?| = L;L— + gh?* | — Q+ Yooh? | (30
. hv L A | L 0 ]
[hu? + gh?| [ w2 + gh? ] —VzthT
AU = huv = i"hﬁ =P+ | 0 | . G1)
L. hu L m L 0
A computationally convenient form of (26), which emphasizes the spatial splitting, is
N At 8 |
Un+1 =] + —| — B*:) + C(2) U",
gl e e 62
At 0 - _ "
1 S 2y - oo = e S L+ cofjor - a2+ 2. o
2 | dx 2 [ ox ox dy
At 8 -
I 4+ | — Bn. —_ C(2) Un+l — Un-H_
gl e e 629
For the three-level centered-time scheme, we obtain
_ At 8 S
Uttt = {1 + —{ — (B*:) + C? |lU* 1, 33
egls e e 52
with the other two intermediary stages being identical to the corresponding (32b) and (32c).
An alternative way of using (30)—(31) is to write the term —Ar{(8P/0x) + (8Q/dy)}" in the form
oP  9Q\* 0 F) YVagh? 0
—At(— + —Q) - —At[— AUy + L (BU)"] VN P R S R Y
ox ay ox dy ox 0 ay 0
= —At[— (AU)" + — (BU)"] + At _6_ 0 + 5 Vagh? . (34
ox oy ox 0 ay 0 '

Then Eq. (26) can be written as

At o
[I + Tt[g (An.) — C(l):”[l + %[% (Bn.) — C(2):”Un+1 = [I — %[’% (An.) + C(l)':”

At 0 i) Yogh® é] 0
I - —|[— @)+ C®llur + At | — + — |1soh2
X { 2 [ ( ) ” t ( [ 0 [égh] , (35
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and the algorithm analogous to (32a)—(32c) can then be written

i]n+1 — [I _ _AL[__ (B") + C(Z)]]U",
dy

2

(36a)

[1[ ; ﬂ[—a— A - c<1>“ﬁn+l - {r- ﬂ[—a— ar) + € |om
2| ox ax

2

{I + ﬂ[i (B"+) — C(2):HU1/L+I = ntt,
dy

2

The same procedure is applied to the three-level
centered-time ADI scheme [Eq. (27)]. Here we
assumed

Logh?] *
P= AUIH—I _ |: 0 }
0

c. Compact fourth-order spatial differencing

For the approximation of the first spatial deriva-
tive, the fourth-order compact spatial differencing
takes the form
(6u ) _ [ Dy,

o /; (1 + Ax*D,,D_,/6)

]u,- + O(AxY), (37
and involves only the grid points i + 1, i, i — 1
(x; = iAx),

where

Dizu; = (Uipy — u;)Ax (38)

‘Dozt = (Uiyy — Ui—1)28x }
D_qu; = (u;y — ui—y)/Ax

Eq. (37) is equivalent to

l[(?i) 4 4(‘9_“) N (."i) ] = Dosus. (39)
6 6)( i+1 ax i ax i—1

Thus (6u/6x);,i = 1..., N, can be determined
from u; by solving a system of linear equations
whose coefficient matrix is tridiagonal and of the

form
\0
’ 1

1 N4

(40)

(N XN

Ciment and Leventhal (1975) introduced the more
convenient notation

) l/zgh2 o 0
+ At | — [ 0 } + — [%ghz] , (36b)
ox 0 ay 0

(36¢)
&) [aes
ax /; a1+ 812/6)]
= Q; 'Dozu; + O(Ax*) 41)
for Eq. (37), where
Qu; =(1 + 8,26 u; = Ye(u;yy + du; + ui_l)} @)
87U =Uipy — 2y + Uy,

Application of compact fourth-order differencing
to the first space derivatives in the ADI shallow-
water algorithm (32a)—-(32¢) yields

- At

Uy = {I + 510, Do (BY) + €Y }U'%,-, (43a)
At _

{I + T [Q: Dy (A%;) — CF }U}IJH

! v

= II + AT[Qx_lDOx(A%')"' ciy ]U,”j“
— ANQ: Do Py + Q7D Q%)  (43b)

Ar .
[’ + 107 DB ) = CF ]U?;“ = Oy, (@30)

i=1,...,N,
j=1’,- -yNya

where N,A, = L, N,A, = D.
The same procedure is applied to the three-level
centered-time scheme [Eq. (27)].

4. Computational procedure
To evaluate (43a) we write it in the form

_ t

Ut = [I +AT' C‘”]U" +A2t- O, Dy (B™U™). (44)
For this one-dimensional problem we first solve a

block-tridiagonal system

Q,W" = D (B"U™) 45)
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to obtain

W = 0,7'Do(B"U"). (46)

In the block-tridiagonal system the individual
blocks are (3 X 3). We then evaluate

At

U = [1 LA C‘”}U” +—Wwr @]
2 2
and with the definition
we obtain
l:]l"“ hA™u™ + apfh™" + ap W
U,"*! = | h™" + aWy" | . (49)
U:s“1 ij h" + o Wy ij

For Eq. (43b) we start by evaluating the right-
hand term
aQ"

—At = —A1Q,7'Dy,Q". (50)
We define
Y = Q,7'Do,Q" &)
and solve the block-tridiagonal system
Q.Y = D,,Q". (52)

We can then write the right-hand side of (43b) as

H. A. RIPHAGEN 1113

Vot = [1 + %C(l)]ﬁn—kl — AtY

+ % (0.~ Doa(APT™1 — 2P).  (53)

Multiplying (43b) from the left by the operator
0., we then obtain

[Qx + —Azi (Doo(A™) — Qxcm)]ﬁ"“

=Q Vot = [Q + ﬁ [0) C(l):li]n-i'l
x x 2 x

At At

- — Q,Y + — [Do(A"U™ — 2PM)].  (54)

Here, owing to the cyclic boundary conditions in
the x-direction, cyclic block—tn’diagonal systems
have to be solved for eachj = 1, , N,.

Efficient algorithms for solvmg cychc tridiagonal
systems were proposed by Temperton (1975),
Navon (1977) and Hindmarsh (1977), among others,
and were generalized to block-cyclic tridiagonal
matrices by Navon (1977).

For a given j, the cyclic block-tridiagonal matrix
resulting from the discretization of (54) has the form

[ E, F, D, ]
D,
R = (55
NI—I
| F, E
with v
[ 1 - 20u 0  —a(-u?+gh) | @D
At
Dij = —av + -‘2"—f 1 - au auv s (56)
L - 0 1 i
[ 4 0 o] @™
| 0 0 4
(1 + 2au 0  a(—u®+gh)|®D
At
Fij = v + —'2‘—f 1 + au —QUD s (58)
|« 0 1 ij
where a = 6At/4Ax.
Having obtained U"*! we finally multiply (43c) from the left by the operator Q, to obtain
At At -
QyUn+1 + _2_ Doy(BnUn+l) — T Qy(C(2)Un+l) _ QyU"+l' (59)
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A block-tridiagonal matrix with (3 x 3) individual blocks and of dimension N, has to be inverted for

eachi =1, ..., N, at each time step.
For given i and j the (3 X 3) blocks have the following entries
[ Atf
l—av —au — — auv
: 2

Du=1 o 1= 2a0  —a(—0? +gh) | ° (60) -
L 0 - 1 i
[4 24t 0

Eij = 0 4 0 ’ (61)
| 0 0 4
1+ av au — Atf —auv

Fy = 0 14+ 2av  a(—0v? + gh) . (62)
0 a 1 i

The inverse of a (3 X 3) matrix was explicitly
calculated’to increase the efficiency of the program.

5. Boundary conditions for the fourth-order com-
pact ADI algorithm

It appears to be no simple matter to deal with
extraneous boundary conditions when fourth-order
accurate approximation of the hyperbolic mixed
initial-boundary value problems is attempted.

After the theoretical advances made by Gustafs-
son et al. (1972) and Oliger and Sundstrom (1976),
numerous investigators such as Elvius and Sund-
strom ,(1973), Adam (1977), Gary (1978), Oliger
(1974), Osher (1973, 1974), Skollermo (1975a,
1975b), Chu and Sereny (1974) and Gottlieb and

Turkel (1978) have recently addressed the problem.’

Oliger (1974) proposed an O(h*) approximation
with an O(k3) extrapolation at the boundaries
using time averaging to stabilize the boundary ap-
proximation. This method has been further elab-
orated by Gary (1978). Adam (1977) proposed a
third-order accurate boundary condition which can
be applied to fourth-order accurate compact finite
differencing and preserves the tridiagonal character
of the algorithm. This method has since been suc-
cessfully employed by Peyret (1978) for a compact
implicit finite-difference solution of the stationary
Navier-Stokes equations.

In both approaches a convergence result is used
due to Gustafsson (1971b, 1975), according to

Wi + 2Wpt =

S 1
QWi+ Wi = 28y (B"U");,, — 4(B"U");, + 5(B"UM);,) + O(R?),

and the analogue atj = N,, i.e.,

which, provided the scheme is stable with regard
to boundary conditions, it is possible to use at the
boundaries approximations one order lower in ac-
curacy and yet retain the convergence of the more
accurate interior approximation. Elvius and Sund-
strom (1973) succeeded in demonstrating stability
of a set of boundary conditions for a second-order
space approximation of the shallow-water equa-
tions. However, no proof of stability has yet been
derived for the boundary conditions of a fourth-
order space approximation to the nonlinear shal-
low-water equations, and one has to rely on experi-
mental evidence.

O(h?) approximations for the extraneous bound-
ary conditions are often stabilized by adding one-
dimensional dissipative operators acting in the
direction of the coordinate tangential to the bound-
ary (Kreiss and Oliger, 1973).

In this work we decided to use the Adam (1977)
and Oliger (1974) boundary conditions.

In Eqgs. (43a) and (43b) we make use of the
periodicity in the x direction.

In the y direction we first use the Adam (1977)
boundary conditions. For instance, for

a -
g (BnUn)ij = Qy—lDOy(B"U")ij = Wi"j+1, (63)

we write ) '
Q, W5t = Doy (B"U");; (64)
and, atj = 1,
1
—— (=5(B"U");,; + 4(B"U");2 + (B"U");3) + O(A?),
2Ay
(65)



SEPTEMBER 1979 I.

rnt1 An+1 —
Wik + 2Wiit_, =

1
W"H—z + W?,Ny—l = m(_S(B”U”)i,N,—z + 4(B"U")i,1v,,—1 + (B"U")i,N,,) + O(h?).
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1
—— (5(B™"U");,y, — 4B"U");y,~1 — (B"U);n,-2),
2Ay

(66)

For (43c), however, both the value of the derivative and that of the unknown U"*! are required at the
y boundaries. Here, we use an inward-backward extrapolation formula for the unknown U}*!, due to
Gustafsson et al. (1972) and which has been shown to be stable by Elvius and Sundstréom (1973)

Uy = 22Uk — Uiz,

where b denotes the boundary grid point.

(67)

The Oliger (1974) method is also adequate for an O(h#*) approximation with O(k®%) extrapolation at the

boundaries. For Eq. (63), we obtain

Wit = ?Al_ [—11/2(B"0™1),0 + (B"U™ 1)) + 18(B"U");,, — 9(B"U"); 2 + 2(B"U");5]  for  j =0
y
1 .
Wit = a—[ 2(B"U")i0 — 3/2((B"U"Y),,; + (B"U™Y),) + 6(B"U™);, — (B"U");;]  for  j =1
Wﬁfv},—l = K [(B"U")i,n,~3 — 6(B"U");y,—2 + 3/2((B"U"“)z1v -1+ B"U" )y, + 2(B"UM)i, ] (68)
for j=N,-1,
Wik = f [=2B"U)in,-5 + 9B"U)iw, > — 18B Uy, + 112(B 0L + (B'U™ ), )]
y
for j=N,.
In this work we experimented with both the
boundary conditions given by Eqgs. (65)-(66) and For the simple hyperbolic system
those given by (68).
That caution must be observed when experiment- ou _ A 9u (70)
ing computationally with extraneous boundary con- ot " Ox

ditions, has been proved by Osher (1974) for the
case of linearized shallow-water equations. Taking a
set of seemingly reasonable boundary conditions, he
showed that this could lead to either non-unique-
ness or non-existence of solutions. A thorough
study of how the boundary conditions affect the
stability and accuracy of implicit methods for
hyperbolic equations has been initiated by Skol-
lermo (1975a, 1975b).

6. Fourth-order dissipation

Owing to the larger aliasing error introduced by
the fourth-order accurate scheme (Grammeltvedt,
1969; Orzag, 1971), we found it necessary to add
a fourth-order dissipative term of the form

— Ax'D.D_ U,

I

— 4
——EAx4< 9 U)
8 ax* /;

—4U;, +6U; —

I
-
S
+
~

AUy + Uiy). (69)

the eigenvalues of the amplification matrix, if a
leapfrog time discretization of the following form
is used:

4
Ux, 1 + A = (1 - e?: D+I2D_I2)U(x — Ap
+ 2AtAD,U(x,n), (71)
are [K | =1—esin'4/2fore < land At/Ax <1 — ¢,
where
2
&= WAx = Tﬂ Ax, (72)

where J is the wavelength.

The result illustrates the fact that waves shorter
than four times the grid size are the ones most
affected by the dissipative term. On the other hand
these very waves are the ones subject to aliasing.
The fourth-order dissipative term was appended to
(43a)~(43c) as follows (see Beam and Warming,
1976):
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_ At -
Uy = [1 + - (@ DoBY) + CF }U",-j -%2D,_10y, (T32)

Ar - -
[’ t 5 (@7 DaslAy) — € }U = [ + A(Q.'Do(ATy) + CN U

¥

— AHQ, 'Dog Py + 0, Dy, Q%) — %DMZD_;U&“ (73b)

At = € . .
[’ + == (@7 DaBY) — CR)UET = Uy ~ <2 DD 203,

In (73a) U% on the right-hand side comes from
the previous computational sequence where the nu-
merical solution is advanced from time level n — 1
to time level n. A value of ¢, = ¢, = 0.5 was em-
ployed throughout.

Filtering techm'qués

Instead of a higher order dissipation term to con-
trol aliasing, one can also use a very selective
low-pass filter.

Three filtering methods were tested. The first is the
Wallington (1962) filter which is an extension of the
Shuman (1955, 1957) filter. It consists in the periodic
successive application of the following two-point
operators:

Ui = 4.28U; — 2.16(Ussy + Ui—y)
+ 0.52(U;ys + U;y),
U, = 0.3750: + 0.25(Usns + Uiy
+ 0.0625(U;y2 + Uiy). (14)

This filter completely eliminates waves with wave-
lengths less than 3Ax. )
A second filtering method tested consists of a
periodic application of a high-order (16th) Shapiro
(1970) filter. The filter is of the form
0= {1 - (F.»*H1 - (F,»"}0, -
FX(Ui) = (Ui, — 2Us; + Uiy y)/4

and has a response

(75)

]

2000 (989.1

1950

mean height {metres)

! N
o i 2 3

t (days)

|

F1G. 1. Time evolution of the mean height for initial condition (I).

(73¢c)

F_?[expikx] = — sin®*(kAx) expikAx. (76)

.This filter eliminates waves shorter than 4Ax
and even after hundreds of applications has only a
negligible damping effect on waves longer than
4Ax. However, its main shortcoming is that because
of the number of grid points employed, it is ef-
fective only in the center of the domain.

A third, very selective, low-pass filter due to Paul
Long (Mahrer and Pielke, 1978) was also tested. This
filter is

A ~8Uy +20-8U, + (1 =d8U,_,
- =Uip + 2U; + Uiy,

where U, is the filtered field.
This filter completely eliminates the 2Ax waves

)

" with each application, while its smoothing effect on

other wavelengths is a function of 8. Its response
function is such that

- 1

U=0U , 78)

1 + & tan®(AAx/2)

where A = 27/J is the wavenumber and J the wave-
length. For § < 0.1 there is little damping of waves
larger than 6Ax.

7. Numerical results
a. The test problem

We decided to use two different initial conditions
employed by Grammeltvedt (1969), both describing
a westerly jet flow with north—south perturbations

56169. 1020
’_-‘-——
5.50} 102°

o ~55361.102°

" Totol energy (relative units)

i 1 ]
i z 3 4

t {days)

FiG. 2. As in Fig. 1 except for total energy.
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Fi1G. 3. As in Fig. 1 except for enstrophy.

of different wavelengths and amplitudes along the
zonal axis of the jet. Initial condition I was also
employed by Gustafsson (1971a) and Navon (1978)
amongst others, and this provides a basis for com-
parison.

Initial condition II was employed by Gerrity et al.

M h(x.y) = Ho + H, tanh OL2 = |y

) h(x,y) =H, + H, tan

The initial velocity field components 4 and v are
derived from the initial height field using the
geostrophic approximation

( —g) oh ( g ) oh
u=|—}\—, v=|=\|—.
S /oy f]ox

Initial condition I initially has energy only in
wavenumber 1 in the x direction, whereas initial
condition 11 initially contains energy in wavenum-

bers 1 and 3 in the x direction.
The dimensions of the rectangular domain were

L = 4400 km, D = 6000 km (82)

(81

2000

1991.6

950

Mean height (metres)

n " L -
I 2 3 4
t (days)

F1G. 4. Time evolution of the mean height for initial condition (IT).

ech
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56149.1020

55595.1020
550H102°

Total energy (relative units)

L . s L
} 2 3 4
t (days)

Fi1G. 5. As in Fig. 4 except for total energy.

(1972) with a fourth-order finite-difference scheme
and by Cullen (1975, 1977) for linear spline Galerkin
finite-element schemes.

The initial height fields are

,OD2 ~y) ( ZWX) (79)
D L

, 612 y)._){w sin €79 1 0.6 sin (6“)} . (80)
D L L

and the following constant values were adopted

Hy=2000m, H,= +220m, H, = 133 m.

g=10ms2 f=10"%s",
B=1510"m1g1

f=7+B0y - D). (84)

The fourth-order compact scheme was run with
the spatial resolution

Ax = Ay = 200 km
and time steps of Az = 900 s or Ar = 600 s.

(83)
where

85)

2
134108. 102 140458.10

1301

Enstrophy {relative units)

s . . "
1 2 3 4
t (days)

F1G. 6. As in Fig. 4 except for enstrophy.
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b. Discussion of
simulation

1t is well known (Haltiner and Williams, 1973;
Gerrity et al., 1972) that if linear computational
stability is to be maintained, the use of the fourth-
order space approximation requires a time-step
smaller by about 30%. Using standard stability cri-
teria for the linearized two-dimensional shallow-
water equations, one gets ‘

MONTHLY WEATHER REVIEW

LA SN S ARSRS S AN S AN B SN S S RN SRS SN SR S Su S S ens s S Su Ee e p M s

1800

T T

T T

T

RSO S Y TS WY WU TR ST UUNES T WUN SR T SU SHND S S S SH S S S SO TR S S S R S

", F16. 7. The initial distribution of the height field depicted by isopleths drawn
at 50 m intervals [initial condition (I)]. The channel walls are shown as solid
horizontal lines, the cyclic boundaries as vertical lines. The domain is covered by
31 grid points in horizontal (east-west) and 23 points in the vertical (north-south).

the numerical results of the A2

[z + (gH)'"™*] < 1,

U T SN TS S WULAN NN SR S S T S SH VA S S G

[ ——\'_f_:zw\ /_____2200__/ |

Fi1G. 8. The 24 h forecast of height field by the compact fourth-order scheme
isoplethed at intervals of 50 m [initial condition (I)].

VoLUME 107

(86)

where # and H are mean velocity and height, re-
spectively. Using # =40m s™!, H = 2000 m, g
= 10 m s72, Ax = 200 km, we obtain

(Ar); = 750 s,

@7

where the subscript 2 stands for a second-order
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F1G. 9. The 48 h forecast of height field by the compact fourth-order scheme at
intervals of 50 m [initial condition (I)].

space approximation. Following Gerrity et al.
(1972),

(At)y = 0.735(At), = 550 s. (88)

In the numerical experiments carried out with the
implicit compact fourth-order ADI algorithm [Eqgs.
(43a)—(43¢)] a time step was used of either 900 or
600 s and a spatial resolution of Ax = Ay = 200 km.
It was found experimentally that the best results in
respect of accuracy were obtained by a periodical
application of the Wallington filter.

Acceptable results were also obtained by employ-
ing fourth-order dissipation. The Shapiro (filter
proved to be inefficient in removing short-wave
noise near the boundaries.

The Long filter (using 8 = 0.1) was also inefficient
near the boundaries.

In all the numerical experiments to be discussed,
the Wallington filter was applied periodically (every
three time steps). Application of the Oliger (1974),
O(h®) boundary conditions to the implicit compact
fourth-order ADI algorithm for the shallow-water

|||||||||||||||

U TS S S SN VO SO U SR ST SR S S {

Fi1G. 10. The 72 h forecast of height field by compact fourth-order scheme
isoplethed at intervals of 50 m [initial condition (I)).
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FiG. 11. The 72 h forecast of height field by compact fourth-order scheme
isoplethed at intervals of 50 m [1mt1al condition (I)].

equations [Egs. (43a)-(43c)] gave rise to instability
near the boundaries after two days of simulation.
On the other hand the Adam (1977) O(43) boundary
conditions [Egs. (65)-(66)] maintained stability dur-
ing the entire period of simulation (four days) and
these boundary conditions were then adopted for all
the numerical experiments.

The adequacy of the Adam (1977) boundary condi-
tions was also established experimentally by Peyret
(1978).

Energy and enstrophy conservation, allowing cor-
rect nonlinear transfers among explicit scales, have

T

T

— 2200

LA S S S S

L
{

>)

R L

emerged as fundamental concepts in finite-differenc-
ing for the shallow-water equations (Arakawa, 1966;
Sadourny, 1975; Fairweather and Navon, 1977).
The time evolution of the three well-known in-
variants for the shallow-water equations: mean
height, total energy and enstrophy, was calculated
at each time step of the numerical integration. An
almost perfect conservation of total energy, ens-
trophy and mean height (proportional to mass) was
obtained, as is evident from Figs. 1-3, which show
total energy, enstrophy and mean height, respec-
tively, as functions of time, for initial condition I.

2200/——-

R SO WA SR WS SR N A N NN W |

PR TR SRS VO U WY S VA S H SR B

F1G. 12. The 48 h forecast of height field by Gustafsson’s QNEX1 (M = 6)
nonlinear ADI scheme isoplethed at intervals of 50 m [initial condition (I)].
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F16. 13. The initial distribution of the height field by isopleths drawn at
50 m intervals [initial condition (1I)].

Figs. 4—6 show total energy, enstrophy and mean
height respectively as functions of time, for initial
condition II.

Adam (1977) O(h®) boundary conditions were ap-
plied to equations 43a—43b, while Elvius-Sundstrom
(1973) boundary conditions [Eq. (67)] were used for
the variable U"*! in (43c). The initial height field
for initial condition I is shown in Fig. 7, the con-
tours having been drawn at 50 m intervals. The
height field after 1, 2, 3 and 4 days of simulation
with a time step of Az = 900 s is shown in Figs. 8-
11, respectively.

The three-level time-centered scheme [Eqs. (27)
and (33)] was also experimented with. Owing to the
appearance of a computational mode as well as a
typical odd-even time-step separation, we employed
a Robert time filter; however, the results obtained
with this scheme are still unsatisfactory.

This is due to the fact that the uncoupling be-
tween time levels makes the three-time level scheme
more sensitive to the linearization procedure (Ste-
ger, 1978). We found its accuracy to be somewhat
lower and it also necessitated higher dissipative
terms. It is anticipated, however, that when this
scheme is used without linearization (as done by
Gustafsson, 1971a) it could yield more accurate
results.

Visual comparison shows agreement between the
results of Gustafsson (1971a) after two days (Fig.
12) and our results on using Eqs. (43a)-(43¢), i.e.,
the compact fourth-order ADI algorithm, in both the
positions and amplitudes of the main troughs and
ridges.

Another set of experiments was conducted this
time using the initial height field for initial condi-
tion II (Fig. 13).

We then compared our results with those of
Gerrity et al. (1972) after two days, also with the
results obtained by Cullen (1975).

Table 1 gives the extreme amplitude values of
the height field in each trough and ridge at the
midpoint of the channel after two days, while
Table 2 gives the corresponding positions as a
fraction of the distance along the channel of the
corresponding extreme values of troughs and ridges.

Figs. 14 and 15 show the height field after one
and two days of integration, using initial condition II.

The results show that the compact fourth-order
ADI results as far as the amplitudes and detailed
positions of the troughs and ridges are concerned
match the Gerrity results with a Ax = 100 km
spatial resolution. It is also evident that the com-
pact fourth-order scheme has translated the systems
of troughs and ridges faster than the corresponding
scheme of Gerrity et al. (1972) with Ax = 200 km.

c. Accuracy tests

In order to provide a basis for accuracy com-
parison in the absence of an analytic solution to
the full nonlinear shallow-water equations, a refer-

TABLE 1. Amplitudes (after two days) in decameters.

Finite difference (Ax = 200 km)

(Gerrity et al.,; 1972) 209 202 209 190 200 189
Finite difference (Ax = 100 km)

(Gerrity et al., 1972) 208 204 206 192 197 189
Compact fourth-order ADI ,

method (Ax = 200 km) 208 204 207 193 198 189
Finite-element (400 km) using

the two-stage Galerkin

method (Cullen, 1975) 210 204 205 193 197 186
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TABLE 2. Phases after two days.
Finite difference (Ax = 200 km) :
Gerrity et al. (1972) 0.198 0.341 0.494 0.703 0.852 1.000
Finite difference (Ax = 100 km)
Gerrity et al. (1972) 0.235 0.399 0.499 0.730 0.857 1.000
Compact fourth-order ADI method
(Ax = 200 km) 0.225 0.373 0.497 0.716 0.854 1.000
Finite element (Ax = 400 km)
using the two-stage Galerkin
method (Cullen 1975) 0.225 0.419 0.475 0.668 0.775 0.968
ence solution was obtained by integrating the system where
by a fourth-order compact ADI method with double €ws = Uswas — Ugap . 92)

resolution in both horizontal space dimensions.
Then, following Gustafsson (1971), we define a
Hilbert space H, by considering all vector func-
tions satisfying
- U =U Ny, J
and
Vie = Vi,Ny = 0. (89

The inner product of two vectors e, 8 and the
norm are then defined by

N.r Nu—l
(a,B) = AxAy Y { 21 a’;Bi;
i=1 j=

+ Y5 0B + @y, Bin,)}
(90)

el = (a0

The relative error between the approximate and

the true solutions of the scheme, represented by
U,uss and Ug,,p, respectively, is

1 day

||Esw4” L=
900 s,

Ar = o1

relative error =
| Uswsnll

The error is summarized in Table 3.

The results are somewhat disappointing, as the-
oretically the truncation error is Ax*/180 + ...
(Orszag and Israeli, 1974), but one has to take into
account both the influence of the boundary condi-
tions and the increased aliasing characteristic of
the fourth-order finite-difference schemes.

The relative error was also calculated by com-
paring the fourth-order compact implicit scheme re-
sults with those obtained with Gustafsson’s (1971)
most accurate nonlinear scheme QN3, which was
assumed to be the reference true solution. The
results are given in Table 4.

8. Summary

It was shown that an implicit compact fourth-
order ADI solution to the shallow-water equations
in conservation-law form is feasible. The trade-off
between efficiency and programming effort inherent
in the use of Padé finite differences (Boyd, 1978)
proved to be not very significant.

R

b/\/—\mo |

FiG. 14. The 24 h forecast of height field by compact fourth-order scheme
isoplethed at intervals of 50 m [initial condition (II)].
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FiG. 15. The 48 h forecast of height field by compact fourth-order scheme,
isoplethed at intervals of 50 m [initial condition (II)].

Quadratic invariants of the shallow-water equa-
tions were almost perfectly conserved for the period
of integration. The application of numerically well-
posed boundary conditions and the control of in-
creased aliasing inherent in fourth-order schemes
proved to be the main computational issues.

Extensive comparisons with the results of other
investigators showed the results to be comparable
to those obtained by a second-order scheme with
a double resolution. Some implications from this
study are the following:

1) The fourth-order compact implicit method
should be tested in a numerical operational weather
forecasting model and compared with the usual
five-point fourth-order method (Kalnay-Rivas,
1977).

2) The operator-compact implicit method sug-
gested by Ciment et al. (1978) should be adapted
to our problem and tested for efficiency and ac-
curacy.

In general, the compact fourth-order implicit
technique appears to offer a fruitful alternative to
classical fourth-order methods.

TABLE 3. |lesuu|l/|Uswanll-

Method Ar =900 s

Compact fourth-order algorithm Egs.

(43a)-(43¢) no smoothing 8.4 10
Same, smoothing with Wallington filter

at every time-step 1.8 1073
Same smoothing with Wallington filter

periodically (i.e., every three

time-steps) 6.1 10™*

It also links the finite-difference method with the
spline method (see Appendix A) and with the finite-
element method (Cullen, 1977) and in a sense gen-
eralizes the latter.

The fourth-order compact algorithm offers a
computationally efficient alternative to the finite ele-
ment approach because the linear systems to be
solved are tridiagonal, as opposed to the more
complex coefficient matrices usually generated by
the finite-element method. Morton (1977) points out
that for regular linear elements, the coefficients of
the mass-matrix in the finite-element method cor-
respond to an operator (1 + 8x%/6) acting on U;.
The approximation

(1 + 8_"2)_1 = (1 - 8—)‘2) + O(h?)
6 ) 6

characteristic of fourth-order compact schemes is
equivalent to a ‘‘half-lumped’’ mass matrix for the
finite-element method. Recently, Navon (1979) used
a generalized mixed-mass (GMM) finite-element
scheme for solving the shallow-water equations.
The GMM mass scheme uses a convex combina-
tion of lumped and consistent mass matrices for
the finite-element method.

TABLE 4. |leswa|l/|[Uanali ¢ = 1 day. esws = Uswas ~ Uqgna-

Method Ar = 900 s
Compact fourth-order algorithm (Wallington
smoothing at every time step) ) 8.1 107
Same algorithm with Wallington smoothing
every three time steps 6.7 107
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The numerical results obtained with the GMM
mass scheme are very similar to those obtained
with the fourth-order compact implicit algorithm and
tend to confirm Morton’s (1977) remark.

Acknowledgment. The authors are thankful to the
reviewer for his helpful comments. :

APPENDIX A

Generalized Compact Implicit
Difference Approximations

Swartz and Wendroff (1974) pointed out that the
compact implicit-difference approximation to 8/dx
can be generalized to implicit schemes with trunca-
tion O(h*") and bandwidth 2/ + 1. If we consider
S as a difference operator and apply it to the
function /*m»% evaluated at mesh points for integral
w, then

(Se?mioTy, p2miwIAT

Ji—1 o Ji—1
= 2 Skje2mwm1' = Ax z Sj—k
i=0 i=0

Ji—1
= Axe?miokdr 5§t with 6 = 2rwAx. (Al)

.J=0
Defining the symbol of the difference operator
S to be

Ji—1
a@ = Y St (A2)
=0

the symbols of the high-order compact implicit
centered-difference operators are given by
by(0)/a () = i sinfg,[sin%(6/2)], (A3)

where g; is the following truncation (Wall, 1948, pp.
345, 380) of a continued-fraction approximation of

arc sin(r)/[7(1 — 72V}
P N T BN ) Rl V2
8 =173 5 @ -1
_ 25 — 1)2j+ L 2l - 12i+7 (Ad)
@j + 1) 4l -

. Each scheme can be reconstituted from its symbol
by replacing i sinf by D,, and sin%*6/2) in g; by
—Ax2D,,D_,/4. The scheme with [ = 1 coincides
with the O(Ax*) fourth-order compact first de-
rivative and also with the O(Ax?) piecewise linear
splme scheme, with

= (1,4,1))6 and B, = (-1, 0, 1)2Ax.

(see also Swartz and Wendroff, 1974).
The phase error per period of the compact implicit
schemes is

€(N,D)
0

(A5)

(A6)
(A7)

i

27{1 — by(6)/[iBa0)}1}
2nwAx = 27N,
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where N is the number of space intervals per
wavelength.

APPENDIX B
Linearized Stability Analysis

A system of linearized-perturbation shallow-’
water equations (Kurihara 1965, Navon 1978) is
given by

ou _ Ou od

— t+id— —fv+—

ot ox

dv ov *

—+ i — + fu > =0, B1
ot ox f (BD)
a®+ai¢i—fau+d>2'f—

ot ox ox

where & is a basic constant zonal wind and @ is the
mean geopotential. This system can be written as

ow ow

A s ew=o0,

B2
ot ox (B2)

where w = (u,v,®)7,

[a01}_{o—fo]
0 a 0|, C=1{f 0 0}. (B3
® 0 @ 0 —fi 0

A:

As A is a constant matrix, the system can also be
written as

+Cw=0

AW

B4
Ot ox (B4

"Applying to it our algorithm, one obtains

14 22 o e

[1 - _Azi(—— (A) + c)} w'. (BS)

Introducing' compact fourth-order differencing
and multiplying throughout by Q.., we obtain

[Qx + % (Don(A-) + Q,Ié)]w"“

- [QI ~ 2 Doa) + Qxé)]w (B6)

Substituting Fourier terms of the form u! = u!
X exp(i\jAx),l = n,n + 1, where X is the wavenum-
ber and x; = jAx and similar expressions are written
for v} and ®}, we obtain
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At sinAAx
4 + 2 cosAAxX)w™! + - 6i

Ax

Dividing throughout by the factor 4 + 2 cos\Ax,
we obtain

I+ At 3i sinAAx A+At—('3]w"“
2Ax 2 + cosAAx 2

_ [y At 3i sin\Ax
[ 2Ax 2 + cosAAx

so that the amplification matrix G is given by

A- -AZ—‘ C]wn, (BS)

G=+D)I-T), (B9)
where
At
T = yaA + > C, (B10)
_ A{_ Ca= 3i sinAAx ' B11)
Ax 4 + 2 cosAAx
More explicitly,
[ —At
yaii ——f yo
2
T = % f oyai 0 (B12)
- —At
i yad > fi 'yaﬁj

Observing that (I + T)™! exists, if k; is an eigen-
value of T the corresponding eigenvalue g; of G is
(Henrici, 1974)

M. NAVON AND H. A. RIPHAGEN

At . sin\Ax At
= (4 + 2 cosAAx)w™ — - 6i

1125

AwHl + % 4 + 2 cosAAx)Cw"*!

Aw" 4 + 2 coshAx)Cw". (B7)

Ax __2_

Therefore, we have to calculate the eigenvalues
«; of T given by

12 N
(yaut — x;)* — Tf Mya — (ya)@(yad — k;)

Ar?
+ —4‘f217’)’0‘ = (yait ~ ;)

~ (ya)*®(yaii — x;) = 0. (Bl4)

The cubic equation (92) has three distinct roots,
all complex. One of them is
At 3i sin\Ax

K = yau = —

—_— i (B15)
Ax 4 + 2 cosAAx

and the other two are given by the solution of the
quadratic equation

(yaii — k;)? — (ya)?® = 0,
Kk — 2yaiik; + (yo)?ia? — (ya)?® = 0, (B16)
K1z = Y2Qyau * (4(ya)?a?
— 4y2a*(@® — O)V? = yair + yad'2. (B17)

We can now make use of a well-known theorem
stating that if Rek; < 0 and «; are distinct, then
|gl~| =1 — k;/1 + k; are inside the unit circle, or on it.
In our case Rex; = 0,i = 1, 2, 3 and it follows that
all the eigenvalues g;,i = 1, 2, 3 of G are on the unit

1~ K . e .
g = . : (B13) circle. Hence we have unconditional stability for the
+ ki linear case.
APPENDIX C

Factorization Technique

We will show here that the addition of the perturbation terms (I)-(IV) to Eq. (22) is equivalent to the
factored equation (26). To this end we expand (26) by multiplying the terms within the brackets on both
sides of the equation and we obtain

At At Ar? )
l:[ + ﬁ_a_(An.) + At___a_ ®B") - — CV - C2 4 ——a—-(A")-—(B")
-+ A_t2 C(I)C(Z) —_ _A_t_z_a_ (An.)C(Z) . _[S_tz__a_ (Bn_)c(l)]Un+1
4 4 ox 4 gy
At t t At 2
= [I + ———a- (A") + _A__g_ B") + A__ CV 4+ @4+ At—i(A"-)i(Bn.)
2 ox 2 9y 2 2 4 ox dy

2 t2 At2 a n
+ At__ C(l)c(2) + A_ _a__ (An.)C(z) 4+ - (Bn.)C(l)]U(n) — At (ﬂ + ig) A (Cl)
4 4 ox 4 9y ox oy
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Using Eq. (25) we can write (C1) as

[1 + ﬂ(a— (A") + Ey_ B") - )]U"H

MONTHLY WEATHER REVIEW
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2
+ -Aztﬁai (A") — o (B”-)@A%-UL) C‘”C‘” (UnHA't' UM
@ (ID
At3 0 — (A")C? ™+ A_t? 9 (B"-)CW U=t + U
4 ox At 4 9y At
I (Iv)
= [”%(a— (A™) +g(nn ) +c)] At(—(;+%) . (€

Eq. (C2) is exactly identical to (22) with the perturbation terms (I)=(IV) added on its left-hand side.
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