GUSTAF: A QUASI-NEWTON NONLINEAR ADI FORTRAN IV PROGRAM FOR SOLVING THE SHALLOW-WATER EQUATIONS WITH AUGMENTED LAGRANGIANS

I. M. NAVON ${ }^{+}$and R. De Villiers
National Research Institute for Mathematical Sciences, CSIR, PO Box 395, Pretoria 0001, South Africa

(Received 11 February 1985; revised 3 September 1985)

Abstract

A FORTRAN IV computer program is documented which implements the nonlinear alternating direction implicit (ADI) method of Gustafsson (1971) for a limited area finite-difference integration of a shallowwater equations model on a β-plane. In this method a computationally efficient quasi-Newton method is used to solve, at each time-step, the resulting nonlinear systems of algebraic equations. Large time-steps can be employed with this method, which is stable unconditionally for the linearized equations. Owing to its nonlinearity, the method is useful particularly where accuracy is important. An augmented Lagrangian method is applied to enforce conservation of the integral invariants of the shallow-water equations. This method approximates the nonlinearly constrained minimization problem by solving a series of unconstrained minimization problems.

Program options include a line-printer plot of the height-field contour and determination, at each time-step, of the three integral invariants of the shallow-water equations. According to the number of nonlinear quasiNewton (QN) iterations performed at each time-step, different QN methods are presented. Long-term runs have been performed using this program and, due to the enforcement of conservation of integral-invariants via the augmented Lagrangian method, no finite-time "blowing" was experienced.

Key Words: Shallow-water equations, Alternating Direction Implicit (ADI), Quasi-Newton solution of nonlinear equations, Augmented Lagrangian nonlinear optimization, Conservation of integral invariants.

INTRODUCTION

The shallow-water equations, that is the barotropic primitive equations for an incompressible, inviscid fluid with a free surface, constitute a quasi-linear system of hyperbolic partial differential equations.

When discretized by explicit time difference approximations, these equations are subjected to the Courant-Friedrichs-Levy (CFL) stability condition, which severely restricts the time-step. In oceanographic and meteorological applications the discretization error in time is small compared with the discretization error in space, and the short time-step constraint imposed by the CFL condition is thus particularly annoying; it can be avoided by using implicit time differencing schemes.

Gustafsson (1971) proposed an efficient, fully implicit nonlinear alternating-direction scheme for solving the shallow-water equations, his method being based on a scheme first proposed by Kreiss and Widlund (1966).

The method necessitates the solution of a number of nonlinear systems of algebraic equations at each timestep of the numerical integration. Owing to the use of a quasi-Newton method, however, considerable computational efficiency is achieved.

In the first section of this paper, a review is given of the Gustafsson ADI algorithm applied to the shallowwater equations on a β-plane; this review is followed by a description of the quasi-Newton method for solving nonlinear systems of algebraic equations, along with the application of the method to Gustafsson's ADI algorithm.

[^0]In the next section the augmented Lagrangian method and its algorithmic implementation are detailed.

The remainder of this paper is devoted to a description of the program GUSTAF, illustrated by a test problem, and to specifications for its use. A listing of the FORTRAN IV source code of the program GUSTAF is included in the Appendix. Typical outputs for 48 -hour forecasts also are presented in the Appendix, along with long-term runs (including a dissipation factor) for 20 days of forecasts. Printer-plotted maps of the height field are included for different QN methods, differing according to the number of nonlinear iterations performed at each time-step.

REVIEW OF THE
 GUSTAFSSON NONLINEAR ADI METHOD

The shallow-water equations

The shallow-water equations can be written in vector form (Houghton, Kasahara, and Washington, 1966) as follows:

$$
\begin{align*}
& \frac{\partial w}{\partial t}=A(w) \frac{\partial w}{\partial x}+B(w) \frac{\partial w}{\partial y}+C(y) w \\
& 0 \leq x \leq L, \quad 0 \leq y \leq D, \quad t \geq 0 \tag{1}
\end{align*}
$$

where L and D are the dimensions of a rectangular domain of area $\bar{A}=L \cdot D ; w$ is the vector function

$$
\begin{equation*}
w=(u, v, \Phi)^{\tau} \tag{2}
\end{equation*}
$$

u, v are the velocity components in the x and y directions, respectively; and

$$
\begin{equation*}
\Phi=\sqrt{g h}, \tag{3}
\end{equation*}
$$

where h is the depth of the fluid and g the acceleration of gravity. A, B, and C are the matrices

$$
\begin{align*}
& A=\left[\begin{array}{ccc}
u & 0 & \Phi / 2 \\
0 & u & 0 \\
\Phi / 2 & 0 & u
\end{array}\right], \quad B=\left[\begin{array}{ccc}
v & 0 & 0 \\
0 & v & \Phi / 2 \\
0 & \Phi / 2 & v
\end{array}\right], \\
& \text { and } C=\left[\begin{array}{ccc}
0 & f & 0 \\
-f & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \tag{4}
\end{align*}
$$

where f is the "Coriolis term" given by

$$
\begin{equation*}
f=\hat{f}+\beta(y-D / 2) \quad \beta=\frac{\partial f}{\partial y} \tag{5}
\end{equation*}
$$

with \hat{f} and β constants.
Periodic boundary conditions are assumed in the x direction,

$$
\begin{equation*}
w(x, y, t)=w(x+L, y, t) \tag{6}
\end{equation*}
$$

whereas in the y direction the boundary condition is

$$
\begin{equation*}
v(x, 0, t)=v(x, D, t)=0 \tag{7}
\end{equation*}
$$

With these boundary conditions and with the initial condition

$$
\begin{equation*}
w(x, y, 0)=\varphi(x, y) \tag{8}
\end{equation*}
$$

the total energy

$$
\begin{equation*}
E=\frac{1}{2} \int_{0}^{L} \int_{0}^{D}\left(u^{2}+v^{2}+\phi^{2} / 4\right) \phi^{2} / 4_{8} \mathrm{~d} x \mathrm{~d} y \tag{9}
\end{equation*}
$$

is independent of time.
Also, the average value of the height of the free surface is conserved, that is

$$
\begin{equation*}
\bar{h}=1 / \bar{A} \int_{0}^{L} \int_{0}^{D} h \mathrm{~d} x \mathrm{~d} y \tag{10}
\end{equation*}
$$

is independent of time.
\bar{A} is the surface of the integration domain.

Applications

Although the shallow-water equations are simpler than the 3-D primitive equations describing the atmosphere - some essential numerical aspects of large-scale prediction equations are preserved. The problem of numerically solving this set of equations is similar to that of solving the hydrostatic primitive equations, because the same mixture of fast and slow motions eccurs. Consequently, investigators usually use the simpler set of equations to test new numerical weather-prediction schemes. The purpose of the method exposed here is
to present an accurate scheme to solve the nonlinear shallow-water equations along with a new technique to enforce a posteriori conservation of the integral invariants of the shallow-water equations in the discretized solution. This ensures the long-term accuracy of the method (see also the Appendix).

The nonlinear Gustafsson ADI algorithm

Let N_{x} and N_{y} be positive integers and set

$$
\begin{equation*}
\Delta x=L / N_{x}, \quad \Delta y=D / N_{y} \tag{11}
\end{equation*}
$$

We shall denote by $w_{j k}^{n}\left(j=0,1, \ldots N_{x} ; k=0\right.$, $\left.1, \ldots N_{y} ; n=0,1, \ldots\right)$ an approximation to $w(j \Delta x$, $k \Delta y, n \Delta t$), where Δt is the time-step. The basic difference operators are

$$
\begin{align*}
D_{0 x} w_{j k}^{n} & =\left(w_{j+1, k}^{n}-w_{j-1, k}^{n}\right) /(2 \Delta x) \\
D_{+x} w_{j k}^{n} & =\left(w_{j+1, k}^{n}-w_{j k}^{n}\right) / \Delta x \tag{12}\\
D_{-x} w_{j k}^{n} & =\left(w_{j k}^{n}-w_{j-1, k}^{n}\right) / \Delta x
\end{align*}
$$

respectively, with similar definitions for $D_{0 y}, D_{+y}$, and D_{-y}. We also define the operators $P_{j k}^{n}$ and $Q_{j k}^{n}$ by

$$
\begin{align*}
& P_{j k}^{n}=\Delta t / 2\left(A\left(w_{j k}^{n}\right) D_{0 x}+C_{k}^{(1)}\right), \tag{13}\\
& Q_{j k}^{n}=\Delta t / 2\left(B\left(w_{j k}^{n}\right) D_{k}+C_{k}^{(2)}\right)
\end{align*}
$$

with

$$
D_{k}= \begin{cases}D_{0 y} & k=1,2, \ldots, N_{y}-1 \tag{14}\\ D_{+y} & k=0 \\ D_{-y} & k=N_{y}\end{cases}
$$

(owing to boundary conditions in the y direction)

$$
C_{k}^{(1)}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{15}\\
-f_{k} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad C_{k}^{(2)}=\left[\begin{array}{ccc}
0 & f_{k} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then Gustafsson's nonlinear ADI difference scheme is defined by

$$
\begin{align*}
\left(I-P_{j k}^{n+(1 / 2)}\right) w_{j k}^{n+(1 / 2)} & =\left(I+Q_{j k}^{n}\right) w_{j k}^{n} \tag{16a}\\
\left(I-Q_{j k}^{n+1}\right) w_{j k}^{n+1} & =\left(I+P_{j k}^{n+1}\right) w_{j k}^{n+(1 / 2)} \tag{16b}
\end{align*}
$$

These equations do not apply to the v component for $k=0, k=N_{y}$, but we use the conditions

$$
\begin{equation*}
v_{j 0}^{n}=v_{j, N_{y}}^{n}=0, \quad n=0,1, \ldots \tag{17}
\end{equation*}
$$

From Equations (16a) and (16b) it is clear that nonlinear systems of algebraic equations have to be solved at each time-step. For proofs of stability and accuracy see Gustafsson (1971).

The Quasi-Newton Method

The nonlinear system of algebraic equations is written in the form

$$
\begin{equation*}
g(\alpha)=0, \tag{18}
\end{equation*}
$$

where α is the vector of unknowns.
In our situation, owing to the fact that not more than two variables are coupled to each other on the lefthand sides of Equations (16), one first solves equation (16a) for

$$
\begin{equation*}
\alpha=\left(u_{1}, \Phi_{1}, u_{2}, \Phi_{2}, \ldots, \Phi_{N_{x}}\right), \tag{19}
\end{equation*}
$$

omitting the n and k indices for simplicity of notation. The Newton method, described, for example, in Isaacson and Keller (1966), is given by

$$
\begin{equation*}
\alpha^{(m+1)}=\alpha^{(m)}-J^{-1}\left(\alpha^{(m)}\right) g\left(\alpha^{(m)}\right) \tag{20}
\end{equation*}
$$

where the superscript denotes the iteration and J is the Jacobian

$$
\begin{equation*}
J=\partial(g, \alpha)=\left(\frac{\partial g}{\partial \alpha}\right) \tag{21}
\end{equation*}
$$

Owing to the structure of the Gustafsson algorithm for the shallow-water equations, the Jacobian matrix is either block cyclic tridiagonal or block tridiagonal.

In order to solve $J^{-1} g$ in Equation (20) an $L U$ decomposition is applied to J (see, for example, Isaacson and Keller, 1966, chapter 2.3.3) where L and U have either the forms

for cyclic block tridiagonal matrices or

for block tridiagonal matrices.

The squares and the triangles in this situation indicate (2×2)-matrices. $J^{-1} g$ then is computed by backsubstitution in two stages. First, z is solved from

$$
\begin{equation*}
L z=g, \tag{24}
\end{equation*}
$$

and then $J^{-1} g$ is solved from

$$
U\left(J^{-1} g\right)=z
$$

In the quasi-Newton method, the computationally expensive $L U$ decomposition ($\mathrm{O}\left(n^{3}\right)$ operations) is performed only once every M-th time-step, where M is a fixed integer.

Because the backsubstitution is a fast operation, the quasi-Newton method is efficient computationally, provided the number of nonlinear iterations at each timestep is small.

The quasi-Newton formula is

$$
\begin{equation*}
\alpha^{(m+1)}=\alpha^{(m)}-\hat{J}^{-1}\left(\alpha^{(m)}\right) \cdot g\left(\alpha^{(m)}\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{J}=J\left(\alpha^{(0)}\right)+0(\Delta t) \tag{27}
\end{equation*}
$$

The method works when M, the number of time-steps between successive updatings of the $L U$ decomposition of the Jacobian matrix J, is a relatively small number; in our situation, $M=6$ or $M=12$.

Gustafsson (1971) proves that even one quasiNewton (QN) iteration is sufficient at each time-step; this method will be denoted by QNEX1. The QN method with two iterations per time-step is denoted by QN 2 , whereas the QN method with three iterations, QN3, is used for comparison and accuracy tests.

Implementation of the QN Method in the Gustafsson ADI Algorithm

(1) Solving the first intermediary ADI step in the x-direction [Eq. (16a)] and noting that not more than two variables are coupled to each other on the left-hand side of (16a), we first solve ($\left.u_{j k}^{n+(1 / 2)}, \Phi_{j k}^{n+(1 / 2)}\right)$, that is Equation (19) is solved:

$$
\alpha=\left(u_{1}, \Phi_{1}, u_{2}, \Phi_{2} \ldots \Phi_{N_{x}}\right)_{k}^{n^{T}}
$$

The detailed equations for $\left(u_{j k}^{n+1 / 2}, \Phi_{j k}^{n+1 / 2}\right)$ are

$$
\begin{array}{r}
u_{j k}^{n+(1 / 2)}+\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(u_{j+1, k}^{n+(1 / 2)}-u_{j-1, k}^{n+(1 / 2)}\right) / 2 \Delta x \\
+ \\
+\frac{\Delta t}{2} \frac{\Phi_{j k}^{n+(1 / 2)}}{2}\left(\Phi_{j+1, k}^{n+(1 / 2)}-\Phi_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
=u_{k}^{n}-\frac{\Delta t}{2} v_{j k}^{n}\left(u_{j, k+1}^{n}-u_{j, k-1}^{n}\right) /(2 \Delta y) \tag{28}\\
-\frac{\Delta t}{2} f_{k} v_{j k}^{n},
\end{array}
$$

$$
\begin{align*}
\Phi_{j k}^{n+(1 / 2)} & +\frac{\Delta t}{2} \Phi_{j k}^{n+(1 / 2)}\left(u_{j+1, k}^{n+(1 / 2)}-u_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
& +\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(\Phi_{j+1, k}^{n+(1,2)}-\Phi_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
= & \Phi_{j k}^{n}-\frac{\Delta t}{2} \Phi_{j k}^{n}\left(v_{j, k+1}^{n}-v_{j, k-1}^{n}\right) /(2 \Delta y) \\
& -\frac{\Delta t}{2} v_{j k}^{n}\left(\Phi_{j, k+1}^{n}-\Phi_{j, k-1}^{n}\right) /(2 \Delta y) \tag{29}
\end{align*}
$$

Using the notation

$$
\begin{equation*}
\lambda_{x}=\frac{\Delta t}{\Delta x}, \quad \lambda_{y}=\frac{\Delta t}{\Delta y} \tag{30}
\end{equation*}
$$

and the definition of the Jacobian, we obtain J in the form
where

$$
H_{j}=\frac{\lambda_{x}}{8}\left[\begin{array}{cc}
2 u_{j} & \Phi_{j} \tag{32}\\
\Phi_{j} & 2 u_{j}
\end{array}\right]_{k}^{n+(1 / 2)}
$$

and

$$
\begin{align*}
& D_{j}= \\
& {\left[\begin{array}{cc}
1+\frac{\lambda_{x}}{4}\left(u_{j+1}-u_{j-1}\right) & \frac{\lambda_{x}}{8}\left(\Phi_{j+1}-\Phi_{j-1}\right)^{n+(1 / 2)} \\
\frac{\lambda_{x}}{4}\left(\Phi_{j+1}-\Phi_{j-1}\right) & 1+\frac{\lambda_{x}}{8}\left(u_{j+1}-u_{j-1}\right)_{k}
\end{array}\right]} \tag{3}
\end{align*}
$$

The $L U$ decomposition of this cyclic block tridiagonal matrix (at every M-th time-step) is performed next (see also Navon, 1977) and $J^{-1} g$ is computed by backsubstitution.
(2) Once $\left(u^{n+(1 / 2)}, \Phi^{n+(1 / 2)}\right)_{j k}$ are known, we determine $v_{j k}^{n+(1 / 2)}$ in the same way. Writing the equation for $v_{j k}^{n+(1 / 2)}$ in (16a), we obtain

$$
\begin{align*}
& v_{j k}^{n+(1 / 2)}+\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(v_{j+1, k}^{n+(1 / 2)}-v_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
& +\frac{\Delta t}{2} f_{k} u_{j k}^{n+(1 / 2)}= \\
& v_{j k}^{n}-\frac{\Delta t}{2} v_{j k}^{n}\left(v_{j, k+1}^{n}-v_{j, k-1}^{n}\right) /(2 \Delta y) \tag{34}\\
& - \tag{35}\\
& \frac{\Delta t}{2} \frac{\Phi_{j k}}{2}\left(\Phi_{j, k-1}^{n}-\Phi_{j, k+1}^{n}\right) /(2 \Delta y) \\
& \alpha \text { is now }\left(v_{1}, v_{2} \ldots v_{N_{x}}\right)_{k}^{n T},
\end{align*}
$$

and, by performing the partial derivatives in the Jacobian matrix J, we obtain

$$
\begin{equation*}
D_{j}=1, \quad H_{j}=\frac{\lambda_{x}}{4} u_{j k}^{n+(1 / 2)} \tag{36}
\end{equation*}
$$

The matrix J now is cyclic scalar tridiagonal. The LU decomposition is performed once again at every M-th time-step and $J^{-1} g$ is solved by backsubstitution.
(3) To solve $w_{j k}^{n+1}$ we use the second part of the Gustafsson algorithm (16b).

We then first solve the coupled variables

$$
\begin{equation*}
\left(v_{j k}^{n+1}, \Phi_{j k}^{n+1}\right) \tag{37}
\end{equation*}
$$

$\alpha=\left(v_{1}, \Phi_{1}, \nu_{2}, \Phi_{2} \ldots \Phi_{N_{y}}\right)$ fixed j and $n+1$. As the boundary conditions are not periodic in the y direction, the J matrix now is block tridiagonal, and consequently the extra rows and columns in the L and U matrices, respectively, do not occur. To obtain the entries for the J matrix, we write the equations for $v_{j k}^{n+1}$ and $\Phi_{j k}^{n+1}$, respectively:
$v_{j k}^{n+1}+\frac{\Delta t}{2} v_{j k}^{n+1}\left(v_{j, k+1}^{n+1}-v_{j, k-1}^{n+1}\right) /(2 \Delta y)$

$$
\begin{gathered}
+\frac{\Delta t}{4} \Phi_{j k}^{n+1}\left(\Phi_{j, k+1}^{n+1}-\Phi_{j, k-1}^{n+1}\right) /(2 \Delta y)=v_{j k}^{n+(1 / 2)} \\
-\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(v_{j+1, k}^{n+(1 / 2)}-v_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x)
\end{gathered}
$$

$$
\begin{equation*}
-f_{k} u_{j k}^{n+(1 / 2)} \tag{38}
\end{equation*}
$$

$$
\begin{align*}
\Phi_{j k}^{n+1} & +\frac{\Delta t}{2} \Phi_{j k}^{n+1}\left(v_{j, k+1}^{n+1}-v_{j, k-1}^{n+1}\right) /(2 \Delta y) \\
+ & \frac{\Delta t}{2} v_{j k}^{n+1}\left(\Phi_{j, k+1}^{n+1}-\Phi_{j, k-1}^{n+1}\right) /(2 \Delta y)=\Phi_{j k}^{n+(1 / 2)} \\
& -\frac{\Delta t}{2} \Phi_{j k}^{n+(1 / 2)}\left(u_{j+1, k}^{n+(1 / 2)}-u_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
& -\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(\Phi_{j+1, k}^{n+(1 / 2)}-\Phi_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \tag{39}
\end{align*}
$$

After the differentiation implied by Equation (21) has been performed, the J matrix for $\left(v_{j k}, \Phi_{j k}\right)_{j}^{n+1}$ is

where
$D_{k}=$

$$
\left[\begin{array}{rr}
1+\frac{\lambda_{y}}{4}\left(v_{k+1}^{n+1}-v_{k-1}^{n+1}\right) & \frac{\lambda_{y}}{8}\left(\Phi_{k+1}^{n+1}-\Phi_{k-1}^{n+1}\right) \\
\lambda_{y} 4\left(\Phi_{k+1}^{n+1}-\Phi_{k-1}^{n+1}\right) & 1+\frac{\lambda_{y}}{8}\left(v_{k+1}^{n+1}-v_{k-1}^{n+1}\right)
\end{array}\right]
$$

$H_{k}=\frac{\lambda_{y}}{8}\left[\begin{array}{cc}2 v_{k}^{n+1} & \Phi_{k}^{n+1} \\ \Phi_{k}^{n+1} & 2 v_{k}^{n+1}\end{array}\right]($ fixed $j)$.
Note that, in the 2×2 matrices $H_{N_{y}}$ and $D_{N_{y}}, v_{N_{y}}^{n+1}=0$. The $L U$ decomposition is performed at every M-th timestep, and then $J^{-1} g$ is solved by backsubstitution.
(4) Having solved ($v_{j k}^{n+1}, \Phi_{j k}^{n+1}$) by using the QN method, we solve $u_{j k}^{n+1}$. The corresponding equation for $u_{j k}^{n+1}$ is [from Equation (16b)]

$$
\begin{align*}
u_{j k}^{n+1}+ & \frac{\Delta t}{2} v_{j k}^{n+1}\left(u_{j, k+1}^{n+1}-u_{j, k-1}^{n+1}\right) /(2 \Delta y)-\frac{\Delta t}{2} f_{k} v_{j k}^{n+1} \\
= & u_{j k}^{n+(1 / 2)}-\frac{\Delta t}{2} u_{j k}^{n+(1 / 2)}\left(u_{j+1, k}^{n+(1 / 2)}-u_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) \\
& -\frac{\Delta t}{2} \frac{\Phi_{j k}^{n+(1 / 2)}}{2}\left(\Phi_{j+1, k}^{n+(1 / 2)}-\Phi_{j-1, k}^{n+(1 / 2)}\right) /(2 \Delta x) . \tag{42}
\end{align*}
$$

Here, we obtain

$$
\begin{equation*}
D_{k}=1, \quad H_{k}=\frac{\lambda_{y}}{4} v_{j k}^{n+1}, \tag{43}
\end{equation*}
$$

that is

$$
\begin{aligned}
& \text { (} j, n+1 \text { fixed). }
\end{aligned}
$$

The quasi-Newton method is used again for solving $u_{j k}^{n+1}$.

THE AUGMENTED LAGRANGIAN METHOD APPLICATION AND ALGORITHM

Method

We define a function f :
$f=\sum_{f=1}^{N_{2}} \sum_{k=1}^{N_{y}}\left[\tilde{\alpha}(u-\tilde{u})^{2}+\tilde{\boldsymbol{\alpha}}(v-\tilde{v})^{2}+\tilde{\boldsymbol{\beta}}(h-\tilde{h})^{2}\right]_{j k}$,
where $N_{x} \Delta x=L, N_{y} \Delta y=D$, and where $\Delta x=\Delta y=$ h is the grid size, n designates the time-level $t_{n}=n \Delta t$, where Δt is the time step, and L and D are the respective dimensions of the rectangular domain.
$(\tilde{u}, \tilde{v}, \bar{h})_{j k}^{n}$ are the predicted variables at the n-th timestep using a finite-difference algorithm (i.e., the nonlinear ADI method of Gustafsson, 1971) for solving the nonlinear shallow-water equations, whereas $(u, v, h)_{j k}^{n}$ are the values adjusted by the nonlinear constrained optimization method using the augmented Lagrangian technique to enforce conservation of the three integral invariants of the shallow-water equations.

Here $\tilde{\alpha}$ and $\tilde{\beta}$ are weights determined by following Sasaki's (1976) principle that the relative weights are so selected as to make the fractional adjustment of variables proportional to the fractional magnitude of the truncation errors in the predicted variables.

In this program we used

$$
\begin{equation*}
\tilde{\alpha}=1, \quad \tilde{\beta}=g / H, \tag{46}
\end{equation*}
$$

H being the mean-depth of the shallow fluid, and we adopt the same three basic principles as Sasaki (1976). The augmented Lagrangian function L is defined by

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{u}, r)=f(x)+u^{T} e(x)+\frac{1}{2 r}|r(x)|^{2} \tag{47}
\end{equation*}
$$

and the minimization of (47) replaces the problem

$$
\begin{equation*}
\operatorname{minimize} f(\mathbf{x}), \tag{48}
\end{equation*}
$$

subject to the equality constraints

$$
\begin{equation*}
e(\mathbf{x})=0 \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{x}=\left(\tilde{u}_{11} \ldots, \tilde{u}_{N_{x} N_{y}}, \tilde{v}_{11} \ldots, \tilde{v}_{N_{x} N_{y}}, \tilde{h}_{12}, \ldots, \tilde{h}_{N_{x} N_{y}}\right)^{n} \tag{50}
\end{equation*}
$$

and $e(\mathbf{x})$ is a vector composed of three nonlinear components given by:

$$
\mathbf{e}(\mathbf{x})=\left\{\begin{array}{l}
E^{n}-E^{0} \tag{51}\\
Z^{n}-Z^{0} \\
H^{n}-H^{0}
\end{array},\right.
$$

where

$$
\begin{align*}
& E^{n}=\frac{1}{2} \sum_{j=1}^{N_{x}} \sum_{k=1}^{N_{y}}\left[\tilde{h}\left(\tilde{u}^{2}+\tilde{v}^{2}\right)+g \bar{h}^{2}\right]_{j k}^{n} \Delta x \Delta y \\
& Z^{n}=\frac{1}{2} \sum_{y=1}^{N_{x}} \sum_{k=1}^{N_{y}}\left[\left(\frac{\partial \tilde{v}}{\partial x}-\frac{\partial \tilde{u}}{\partial y}+f\right) / \tilde{h}\right]_{j k}^{2 n} \Delta x \Delta y \\
& H^{n}=\sum_{j=1}^{N_{x}} \sum_{k=1}^{N_{y}} \tilde{h}_{j k} \Delta x \Delta y . \tag{52}
\end{align*}
$$

Here, E^{n}, Z^{n}, and H^{n} are the discrete values of the integral invariants of total energy, potential enstrophy and mass at time $t_{n}=n \Delta t$, whereas E^{0}, Z^{0}, and H^{0} are the values of the same integral invariants at the initial time $t=0$.

In general, if we have m integral invariants, the constraints vector $e(\mathbf{x})$ is given by

$$
\begin{equation*}
\mathbf{e}(\mathbf{x})=\left(e_{1}(\mathbf{x}) \ldots e_{m}(\mathbf{x})\right) \tag{53}
\end{equation*}
$$

The vector u is the m-component multiplier vector

$$
\begin{equation*}
u=\left(u_{1}, u_{2} \ldots u_{m}\right) \tag{54}
\end{equation*}
$$

whereas r is a penalty parameter.

The augmented Lagrangian algorithm

Here we follow the algorithm of Bertsekas (1975, 1980) for minimizing the augmented Lagrangian

$$
\begin{equation*}
L_{r_{k}}\left(\mathbf{x}, u_{k}\right)=f(x)+u_{k} e(\mathbf{x})+\frac{1}{2 r_{k}}|e(\mathbf{x})|^{2} . \tag{55}
\end{equation*}
$$

The algorithm proceeds as follows:
First, we either select an initial vector of multipliers u based on a priori knowledge (see Sasaki, 1976; Sasaki, Barker, and Goerss, 1979), or start with a zero vector in the absence of such knowledge. We then select penalty parameters $r_{0}^{i}>0$ and a sequence $\left\{\eta_{k}\right\}$ with $\eta_{0}>0$.

Step 1: Given a multiplier vector u_{k}, penalty parameters r_{k}^{i} and a parameter y_{k}, locate a vector \mathbf{x}_{k} satisfying

$$
\begin{equation*}
\left\|\nabla_{k} L_{r_{k}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\| \leq\left\{\eta_{k}\right\}\left\|e\left(\mathbf{x}_{k}\right)\right\| \tag{56}
\end{equation*}
$$

by carrying out an inexact unconstrained minimization of the augmented Lagrangian function $L_{r_{k}}\left(\mathbf{x}_{k}, u_{k}\right)$.

For the unconstrained minimization we used the conjugate gradient method, which has the virtue of requiring relatively few memory storage locations because we have a large-scale minimization problem. In our situation we used the ZXCGR IMSL routine (see also Navon and de Villiers, 1983).

Step 2: If

$$
\begin{equation*}
\left|e\left(x_{k}\right)\right|<\varepsilon_{i}, \tag{57}
\end{equation*}
$$

where ε_{i} belongs to a preselected decreasing sequence $\left\{\varepsilon_{k}\right\}$ tending to zero, then stop. Otherwise proceed to Step 3.

Step 3: Update the multiplier vector u_{k} by using the formula

$$
\begin{equation*}
u_{k+1}=u_{k}+r_{k}^{-1} \mathbf{e}\left(\mathbf{x}_{k}\right) \tag{58}
\end{equation*}
$$

Update the select penalty parameters $r_{k+1}^{i} \varepsilon\left(0, r_{k}\right)$, following the formula

$$
r=\left\{\begin{array}{cl}
\beta r_{k}, & \text { if }\left|e\left[x\left(u_{k}, r_{k}\right)\right]\right|>\gamma\left|e\left[x\left(u_{k-1}, r_{k-1}\right)\right]\right| \tag{59}\\
r_{k}, & \text { if }\left|e\left[x\left(u_{k}, r_{k}\right)\right]\right| \leq \gamma\left|e\left[x\left(u_{k-1}, r_{k-1}\right)\right]\right|
\end{array}\right.
$$

where

$$
\begin{align*}
& \beta=(0.4)^{k} \\
& \gamma=0.25 . \tag{60}
\end{align*}
$$

Select $\eta_{k+1} \geq 0$, following a formula of the form

$$
\begin{equation*}
\boldsymbol{\eta}_{k}=(0.8)^{k} \tag{61}
\end{equation*}
$$

Return to Step 1 and perform another cycle of augmented Lagrangian minimization.

Formulae to calculate the value of the function (i.e. the augmented Lagrangian) and its gradient are usersupplied and will be described later in connection with subroutine FUNCT.

PROGRAM GUSTAF

The Test Problem

The test problem used here is the same as that in Navon and Riphagen (1979), which is the initial heightfield condition No. 1 of Grammelvedt (1969), that is

$$
\begin{array}{r}
h(x, y)=H_{0}+H_{1} \tanh \left(9\left(\frac{D / 2-y}{2 D}\right)\right) \\
+H_{2} \operatorname{sech}^{2}\left(9\left(\frac{D / 2-y}{D}\right)\right) \\
\cdot \sin \left(\frac{2 \pi x}{L}\right) . \tag{62}
\end{array}
$$

The initial velocity fields were derived from the initial height field, using the geostrophic relationship

$$
\begin{equation*}
u=\left(\frac{-g}{f}\right) \frac{\partial h}{\partial y}, \quad v=\left(\frac{g}{f}\right) \frac{\partial h}{\partial x} \tag{63}
\end{equation*}
$$

The constants used were:

$$
\begin{array}{rlrl}
L & =4400 \mathrm{~km} & g & =10 \mathrm{~m} \mathrm{~s}^{-2} \\
D & =6000 \mathrm{~km} & H_{0} & =2000 \mathrm{~m} \\
\hat{f} & =10^{-4} \mathrm{~s}^{-1} & H_{1} & =220 \mathrm{~mm} \\
\beta & =1.5 .10^{11} \mathrm{~s}^{-1} \mathrm{~m}^{-1} & H_{2} & =133 \mathrm{~m} . \tag{64}
\end{array}
$$

The time and space increments used for the short runs (two days) were

$$
\begin{array}{ll}
\Delta x=\Delta y=200 \mathrm{~km} & \Delta t=1800 \mathrm{~s} \\
\Delta x=\Delta y=200 \mathrm{~km} & \Delta t=3600 \mathrm{~s} . \tag{65}
\end{array}
$$

with $M=6$ or $M=12$.
For the long-term integrations (20 days) the time and space increments were

$$
\begin{align*}
\Delta x=\Delta y=500 \mathrm{~km}, \quad \Delta t & =3600 \mathrm{~s}, \\
\text { with } M & =12 . \tag{66}
\end{align*}
$$

The Dissipation Term

To avoid nonlinear instabilities in long-term integrations a dissipation term of the form

$$
\begin{equation*}
\varepsilon \Delta t^{3} D_{+y} D_{-y} w_{j k}^{n} \tag{67}
\end{equation*}
$$

was added to the right-hand side of equation (16a) and the term

$$
\begin{equation*}
\varepsilon \Delta t^{3} D_{+x} D_{-x} w_{j k}^{n+(1 / 2)} \tag{68}
\end{equation*}
$$

to the right-hand side of equation (16b).
The coefficient $\varepsilon=0.015$ was used.

Program Operations

Input specifications We first shall describe the input specifications and only then the various subroutines of the program GUSTAF. The input to the program consists of two cards, as follows:

CARD 1 FORMAT (6F10.4,315,F5.3) contains the following ten parameters:
$F L-$ the length dimension (L) of the rectangular integration domain;
D - the width dimension (D) of the rectangular integration domain;
T-total simulation time (in seconds);
$D X$ - the space increment in the x direction in meters;
$D Y$ - the space increment in the y direction in meters;
$D T$ - the time-step in seconds;
$I P R$ - a parameter controlling output operations of the program, that is, specifying after how many time-steps the forecast field should be displayed;
M-the number of time-steps between successive updates of the $L U$ decomposition of the Jacobian matrix J, for the $Q N$ method;
NINT - the number of nonlinear $Q N$ iterations to be performed at each time-step; $A D J$ - the value of ε, the diffusion coefficient.

CARD 2 (called in subroutine (SETUP) specifies different parameters relative to the initial field [see Eq. (1)], using format 6E10.4, and contains the following five parameters:
HO - constant for the initial height field;
H1 - constant for the initial height field;
H 2 - constant for the initial height field;
FHAT-Coriolis parameter;
BETA - $\mathrm{d} f / \mathrm{d} y$, the Rossby parameter.
Main program and subroutines The main program SHALLOW reads the first data card and, after some preliminary calculations, calls the subroutine SETUP to compute the initial height-field and velocityfield values at each grid point.

The output subroutines UVOUT, LOOK, and HOUT (called from LOOK) are next called to display the initial fields, the initial total energy and the initial mean height. Subroutine MAPPA (called from LOOK) displays a printer-plotted map of the height-field contours.

The solution of the nonlinear constrained optimization problem requires scaling of the variables so that the scaled variables are of similar magnitude and of order unity in the region of interest. Also, the nonlinear equality constraints should be of the same order of magnitude to avoid one constraint dominating the others.

This scaling is performed in the main program SHALLOW. The variables are scaled as follows:

$$
\begin{array}{rlrl}
u_{i j}^{s} & =u_{i j} V^{-1}, & v_{i j}^{s}=v_{i j} V^{-1}, \quad h_{i j}^{s}=h_{i j} L^{-1} \\
f_{j} & =T f_{j} & g^{s}=g L V^{-2} \\
i & =1 \ldots N_{x} & & \\
j & =1 \ldots N_{y} & & \tag{69}
\end{array}
$$

(see also Navon and de Villiers, 1983; Gill, Murray, and Wright 1981).

After the dissipation term has been calculated, the central subroutine GUSTAF is called. This subroutine performs the bulk of the Gustafsson nonlinear ADI algorithm and solves the values of $\mathrm{U}, \mathrm{V}, \mathrm{PHI}$ for each successive time-step.

GUSTAF in turn calls, at each time-step, the subroutines BACKBLK and BACKTRI to perform block or scalar backsubstitutions, respectively, whereas the subroutines LUDECOM and LUTRID are called every M-th time-step to perform block or scalar matrix LU decompositions, respectively.

After a predetermined number of time-steps (IPR), the subroutine LOOK is called to calculate the integral invariants of the shallow-water equations, namely the total energy and the mean height, as well as the potential enstrophy.

Subroutine LOOK in turn calls the output subroutines HOUT and MAPPA. When the preset total simulation time has been reached, the height and velocity fields are written on file for further use, together with the name of the program, the number (M) of nonlinear QN iterations per time-step, the number of days of simulation, the time-step, the space increments $D X$ and $D Y$, and the number of grid points ($N X$ and $N Y$) in the x and y directions, respectively.

SUBROUTINE GUSTAF ($U, V, P H, I, H, F, U H$, $V H, P H I M, A K, B K, C K, D K, E K, A J, B J, C J, P, Q, R$, $X, Y, Z, G, S, E, A L, B L, C L, D L, E L, A M, B M, C M, L X$, $N X, N Y, N T, M, N I N T)$.

This subroutine performs the bulk of the work when the Gustafsson nonlinear ADI algorithm is used to solve the shallow-water equations. Essentially, the subroutine follows the same procedure as the algorithm outlined in the section on Implementation of the QN Method in the Gustafsson ADI algorithm.

Starting with the initial fields, U, V, and $P H I$, GUSTAF first calls the subroutine LUDECOM every M-th time-step to perform cyclic block-tridiagonal LU decomposition. P, Q, and R are the subdiagonal, diagonal, and superdiagonal (2×2) block matrices, respectively, that constitute the Jacobian matrix. In this way we obtain $u_{j k}^{n+(1 / 2)}$ and $\Phi_{j k}^{n+(1 / 2)}$, renamed $U H$ and PHIH, respectively, following Equations (28)-(33), and by calling subroutine BACKBLK to perform the block backsubstitution, we obtain $J^{-1} g$ for the first one-half of the time-step for ($u_{j k}^{n+(1 / 2)}, \Phi_{j k}^{n+(1 / 2)}$). The procedure is repeated NINT times, which is the number of preset nonlinear QN iterations for every one-half of a time-step. Then $\nu_{j k}^{n+(1 / 2)}$, renamed $V H$, is obtained, following the algorithm outlined in Equations (34)-(36), that is by calling the subroutine BACKTRI to perform cyclic tridiagonal matrix backsubstitution. The procedure again is repeated NINT times - the number of present nonlinear QN iterations for every one-half of a time-step.

The rest of the parameters in GUSTAF pertain to the specific subroutines which it calls, and will be detailed there.

The second part of subroutine GUSTAF, the augmented Lagrangian method for enforcing a posteriori conservation of the shallow-water integram invariants, is implemented.

One first tests whether one needs to carry out an adjustment at a given time-step by measuring the deviation from conservation. Next, one sets up an augmented Lagrangian function, with initial multipliers $U U H, U Z$, and $U E$ corresponding to the constraints of total mass, potential enstrophy, and total energy, respectively. Then, the initial penalties PNLTH, PNLTZ, and PNLTE are set. An initial value for the parameter ETA also is set.

Then a loop is set up which implements the augmented Lagrangian algorithm. A conjugate-gradient unconstrained minimization solver-in this instance the IMSL Library Subroutine ZXCGR using a method due to Powell (1977) - is used to minimize the augmented Lagrangian. The unconstrained minimization is considered to be accomplished once a threshold accuracy dependent on ETA is reached.

Thereafter, the Lagrange multipliers, the penalties and the parameter ETA are updated, and another cycle of augmented Lagrangian minimization is completed. The process will stop either when the nonlinear equality constraints are satisfied within a required accuracy, or when ETA becomes too small, that is, when the number of augmented Lagrangian minimization cycles exceeds a limit.

Subroutine ZXCGR calls the subroutine FUNCT, which evaluates the function value of the augmented Lagrangian, as well as its gradient vector.

If the user has a NAG scientific library, he may select to use subroutines EO4DBF or EO4DBE, double- or single-precision subroutines of the NAG library, which determine an unconstrained minimum of a function of several variables, using first derivatives, by the conjugate gradient algorithm.

SUBROUTINE LUDECOM (P, Q, R, A, B, C, D, E, $N Y, N, I N D)$.

This subroutine performs $L U$ decomposition of a block tridiagonal matrix with subdiagonal, diagonal, and superdiagonal elements in arrays P, Q, and R, respectively. The elements of the matrix are (2×2) matrices. The matrix is decomposed into matrices L and U, where L has subdiagonal elements in array B and diagonal elements in array A, U has superdiagonal elements in array C, and all diagonal matrices are identity matrices.

If the given block tridiagonal matrix is not cyclic, set $I N D=0$. If the given block tridiagonal matrix is cyclic, set $I N D=1$. In this situation L also has nonzero elements in blocks 1 to (NM-2) of the last block-row in array E, and U also has nonzero elements in blocks 1 to (NM-2) of the last block column in array D.

The order of the given matrix is $2 \times N$.
For the algorithm used for the $L U$ decomposition of a cyclic block tridiagonal matrix see Navon (1977).

SUBROUTINE LUTRID (P, Q, R, A, B, C, D, E, $L, N, I N D)$.

This subroutine performs the $L U$ decomposition of a tridiagonal matrix, with subdiagonal, diagonal, and superdiagonal elements in arrays P, Q, and R, respectively.

This matrix is of order N.
If the matrix is cyclic tridiagonal, $I N D$ is set to 1 , otherwise to 0 . In the L-matrix the diagonal elements are in array A and the subdiagonal elements in array B. If $I N D=1$, the first $N-2$ elements of the N-th row are in array.

In the U-matrix the diagonal elements are all equal to 1 (therefore not stored) and the superdiagonal elements are in array C. If $I N D=1$, the first $N-2$ elements of column N are in array D.

SUBROUTINE BACKBLK (A, B, C, D, E, S, X, $L, N, I N D)$.

Following Equations (24)-(25), this subroutine solves $J^{-1} g$ in two stages by backsubstitution, that is, it determines X where

$$
L * Y=S \quad \text { and } \quad U * X=Y
$$

the matrices L and U being formed by $L U$ decomposition of a block or cyclic block tridiagonal matrix.

Here X stands for the vector $J^{-1} g$ in the nonlinear quasi-Newton iterative method.

SUBROUTINE BACKTRI (A, B, C, D, E, S, X, L, $N, I N D)$

Following Equations (24)-(25), this subroutine solves $J^{-1} g$ in two stages by backsubstitution, that is determines X where

$$
L * Y=S \quad \text { and } \quad U * X=Y
$$

the matrices L and U being formed by $L U$ decomposition of a tridiagonal or cyclic tridiagonal matrix.

Here X stands for the vector $J^{-1} g$ in the nonlinear quasi-Newton iterative method.

SUBROUTINE SETUP ($U, V, P H I, H, F, N X, N Y$, $S, C, L X)$

This subroutine sets up the initial height field H and calculates the variable $P H I=\Phi=2 \sqrt{g h}$ and from it, using Equation (46), the components of the initial velocity fields U and V. The subroutine also calculates the Coriolis parameter F. The parameters $N X, N Y$, and $L X$ are calculated in the main program SHALLOW to be the effective number of space increments in the x and y directions, respectively, whereas $L X$ is the maximal number of space increments in the x direction.
S and C are auxiliary parameters for calculating intermediate trigonometric variables.

SUBROUTINE LOOK ($U, V, P H I, H, N X, N Y, L X$)
This subroutine calculates, at each time-step, the potential enstropy, total energy and mean height, which are invariants of the shallow-water equations. It also prints out these values, together with the height-field values, by calling subroutine HOUT, and calls subroutine MAPPA for a lineprinter contour plot of the height field. The CPU time for each 12 time-steps also is printed.

SUBROUTINE MAPPA (FUN, $C, N X, N Z, L X$)
This subroutine provides a visual display of the height field by lineprinting an isoline contour plot of the height
field for every fifty meters. The parameter FUN gives the forecast field to be contoured, whereas the parameter C is the inverse of the contour interval in meters (for example, if the contour interval is $50 \mathrm{~m}, C=0.02$). The parameter $N Z=N Y+1$.

SUBROUTINE HOUT ($H, N X, N Y, L X$)
This subroutine digitally prints the height-field values in a matrix format.

SUBROUTINE UVOUT ($W, N X, N Y, L X$)
This subroutine digitally prints the values of the velocity-field components in a matrix format. W stands for either the U or the V component of the velocity field.

SUBROUTINE FUNCT (XC, FC, GC)
This subroutine evaluates the function value of the augmented Lagrangian, as well as the gradient vector of the augmented Lagrangian.

Here $X C$ stands for the length of the vector x (i.e. $3 N_{x} N_{y}$), whereas $F C$ is the function value and $G C$ the gradient vector value, both of dimension $3 N_{x} N_{y}$.

Examples of output Examples of GUSTAF output are provided to demonstrate the different options of the program. The initial height field, using a space resolution of $\Delta x=\Delta y=200 \mathrm{~km}$, is shown in Figure 1. Figures 2 to 4 show the height-field contours after two simulation days, using a time-step of 3600 s and the methods QNEX1, QN2, and QN3 with $M=6$. Figures 5 and 6 show the height-field contours, using a space resolution of $\Delta x=\Delta y=500 \mathrm{~km}$ and a time-step of 3600 s for the methods $Q N 2$ and $Q N 3$ with $M=12$, the dissipation coefficient being $\varepsilon=0.015$, after 20 simulation days.

Figure 1. Initial height field. $D X=D Y=200000 \mathrm{M}$.

Figure 2. Height-field contours after 2 days. $D X=D Y=200000 \mathrm{M}, D T=3600 \mathrm{sec}, Q N E X 1$ method with $M=6$.

Figure 3. Height-field contours after 2 days. $D X=D Y=200000 \mathrm{M}, D T=3600 \mathrm{sec}, Q N 2$ method with $M=6$.

Figure 4. Height-field contours after 2 days. $D X=D Y=200000 \mathrm{M}, D T=3600 \mathrm{sec}$, $Q N 3$ method with $M=6$.

Figure 5. Height-field contours after 20 days. $D X=D Y=500000 \mathrm{M}, D T=3600 \mathrm{sec}, Q N 2$ method with $M=12$, epsilon $=0.015$.

Figure 6. Height-field contours after 20 days. $D X=D Y=500000 \mathrm{M}, D T=3600 \mathrm{sec}, Q N 3$ method with $M=12$, epsilon $=0.015$.

REFERENCES

Bertsekas, D.P., 1975, Combined primal dual and penalty methods for constrained optimization: SIAM Jour. Control and Optimization, v. 13, p. 521-544.
Bertsekas, D. P., 1980, Penalty and multiplier methods in nonlinear optimization: theory and algorithms, in Dixon, L. C. W., Spedicato, E., and Szego, C. P., eds., Publishers of Nonlinear optimization: theory and algorithms, Boston, p. 253-278.

Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical optimization: Academic Press, New York, p. 401.
Grammeltvedt, A., 1969, A survey of finite-difference schemes for the primitive equations for a barotropic fluid: Mon. Wea. Rev., v. 97, no. 5, p. 384-404.
Gustafsson, B., 1971, An alternating direction implicit method for solving the shallow-water equations: Jour. Comput. Physics, v. 7, no. 2, p. 239-254.
Houghton, D., Kasahara, A., and Washington, W., 1966, Long-term integration of the barotropic equations by the LaxWendroff method: Mon. Wea. Rev., v. 94, no. 3, p. 141-150.

Isaacson, E., and Keller, H. B., 1966, Analysis of numerical methods: John Wiley \& Sons, New York, 541 p.
Kreiss, H.O., and Widlund, O.B., 1966, Difference approximations for initial-value problems for partial differential equations, in Kruskal, M. ed., Proceedings of the Summer School for Mathematics and Physics: Springer-Verlag, New York, 301 p .
Navon, I. M., 1977, Algorithms for the solution of scalar and block cyclic tridiagonal systems: CSIR Spec. Rep. WISK 265, Pretoria, South Africa, 45 p.
Navon, I. M., and Riphagen, H. A., 1979, An implicit compact fouth-order algorithm for solving the shallow-water equations in conservation-law form: Mon. Wea. Rev., v. 107, no. 9, p. 1107-1127.

Navon, I. M., and de Villiers, R., 1983, Combined penaltymultiplier optimizaton methods to enforce integral invariants conservation: Mon. Wea. Rev., v. 111, no. 6, p. 1228-1243.
Navon, I. M., and Riphagen, H. A., 1986, SHALL 4-an implicit compact fourth-order FORTRAN program for solving the shallow water equations in conservation-law form: Computers \& Geosciences, v. 12, no. 2, this issue.
Powell, M. J., 1977, Restart procedures for the conjugategradient method: Math. Program No. 12, p. 241-254.
Sasaki, J., 1976, Variational design of finite-difference schemes for initial-value problems with an integral invariant: Jour. Comput. Physics, v. 21, p. 270-278.

Sasaki, J., Barker, T., and Goerss, J. S., 1979, Dynamic data assimilation by the noise freezing method: Final Report No. F52551792, Naval Environmental Prediction Research Facility, Monterey, California 93940, 80 p .

APPENDIX

The shallow-water equations for the atmosphere

The free surface linearized gravity wave equations for a one-layer, homogeneous incompressible fluid with an upper surface permitted to be free are

$$
\begin{gather*}
\frac{\partial u}{\partial t}+U \frac{\partial u}{\partial x}+\frac{1}{\bar{\rho}} \frac{\partial p}{\partial x}=0 \tag{Al}\\
\delta\left(\frac{\partial w}{\partial t}+U \frac{\partial w}{\partial x}\right)+\frac{1}{\bar{\rho}} \frac{\partial p}{\partial z}=0 \tag{A2}\\
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0 . \tag{A3}
\end{gather*}
$$

Here δ identifies terms that would contribute to the divergence equation. Its value is either 0 or 1 .

Using the hydrostatic assumption one obtains

$$
\begin{equation*}
\frac{1}{\bar{\rho}} \frac{\partial p}{\partial x}=g \frac{\partial h}{\partial x} \tag{A4}
\end{equation*}
$$

and Equation (A1) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial t}+U \frac{\partial u}{\partial x}+g \frac{\partial h}{\partial x}=0 \tag{A5}
\end{equation*}
$$

By integrating the continuity Equation (A3) in the vertical one obtains

$$
\begin{equation*}
\frac{\partial h}{\partial t}+U \frac{\partial h}{\partial x}+H \frac{\partial u}{\partial x}=0 \tag{A6}
\end{equation*}
$$

The phase velocity for shallow-water waves is

$$
\begin{equation*}
c=U \pm \sqrt{g H} . \tag{A7}
\end{equation*}
$$

The gravity waves described are termed external, because their maximum amplitude is at the boundary of the fluid.

If the effects of the earth's rotation are added to the hydrostatic one-layer equations-the deflection caused by the Coriolis force affects low-frequency gravity waves. In addition Rossby waves are determined that depend on the spatial variation of the Coriolis parameter. The equations of motion are

$$
\begin{gather*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-f v+g \frac{\partial h}{\partial x}=0 \\
\frac{\partial v}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}+f u+g \frac{\partial h}{\partial y}=0 \tag{A8}\\
\frac{\mathrm{~d} h}{\mathrm{~d} t}=-\left(\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y}\right)
\end{gather*}
$$

Using assumptions of hydrostaticity, constant density, and incompressibility as well as the barotropic assumption that is the density is a functional of pressure alone,
which makes all surface pressure surfaces to be parallel and only one level need be forecast. Using harmonic perturbations one obtains a cubic frequency equation

$$
\begin{align*}
\delta(U-c)^{3}-\left(g H+f^{2} / k^{2}\right)(U & -c) \\
& -\frac{f g}{k^{2}} \frac{\partial H}{\partial y}=0 \tag{A9}
\end{align*}
$$

To get the fast solutions set $U=0$ and $\delta=1$ which gives

$$
\begin{equation*}
c_{1,2}= \pm \sqrt{g H+f^{2} / \mu^{2}} \tag{A10}
\end{equation*}
$$

These are inertial gravity-waves and when $f=0$

$$
\begin{equation*}
c_{1,2}= \pm \sqrt{g H} \tag{All}
\end{equation*}
$$

that is the formula for shallow-water waves.
The slow meteorological solution to (A9) may be obtained by setting $\delta=0$

$$
\begin{equation*}
c_{3}=\frac{U+(f / H) \frac{\partial H}{\partial y}}{k^{2}+\left(f^{2} / g H\right)} \tag{A12}
\end{equation*}
$$

PROGRAM LISTING

```
C PPROGRAM GUSTAVITNPUT, OUTPUT,TAPEIEINPUT,TAPEBEOUTPUT,TAPEIII
THIS IS THE MAIN CONTROL PROGRAM UHICN IMPLEMENTS THE OUASIONEYTON
NONGLINEAR GUSTAFSSON ALTERNATING IMPLICITTMETHOD FOR SOLVING TME
SHALLOV VATER EOUATIONS.
THE PROGRAM ALSO IMPLEMENTS A SCALING OF THE VARIABLESSIN OROER TO
```



```
TECHNIOUE.
            COMmON/FLD/XCISAOI
            COMMON/OLO/XO(SAOS,HO,ZO,EO,ALPHA,BETA,TG,FIT21,NX,NY,LX,LY,PNLTH
            1.PPNLTZ,PNLTE,UUH,UZ, UE
            I,POMMONTCONST/FLL,D,T:DX,DY,DT,FX,FY,FT,G,TIME,IPR,ADJ,ODJ,IND
            COMNON/RITE/NIN,NOUT,NTAPE
```



```
            HAL{15,12),BL(15,12),CLI15,12
```



```
            G#IOGOUFAC/1.EOS/. HFAC/1.EOS/
            NINE1
            NOUT&3
            NTAPE=1I
            FORMATIBF10.4,315,F5.3)
    2 FORMATI&2MO THE LUCDECOMPOSITION IS DONE ONLY EVERY,I2,I3H-TM TIM
            IE STEPISSHO THE NUMAER OF ITERATIDNS INNEACH HALF TIME STEP IS IIZ
            7FORMATITSHO CHANGE DIMENSIONS OF ARRAYS U,V,%...** TO ACCOMMODA
            ITETHIS DATA SET,ISX,BIMAND THE VALUESSASSIGNEOCTOMLX ANDDLY, U
            2HICHINDICATE CERTAIN ARRAY DIMENSIONS.J
            SFORMATI2OHI INNITIAL UGFIELDI'
    IO FORMATIAIHOINITIAL VALUE OF CONSTRAINTS. H. Z E E: , 3EIA.GS
111
                O, TMATISM,2ISIMAMIMUM VALUES OF M, Y, TIME RESPECTIVELY.
```



```
    OX, OY, DT ARE THE INCRENENTS IN X, Y, TIME RESOECTIVELY,
    IPR INDICATES THE PRINTOUT FREOUENCY, PRINTOUT AFTER EACH DTAIPR.
            IF IPRIS BLANK OR ZERO IPR EILLSEGGIVENTHEEVALUEI.
            MEAD{NIN,I\ FL,D,T,OX,OY,OT,IPR,M,NINT, AOJ
            Lx=15
            NX=FL/DX
            NY=1+IFIX(D/OY)
            #RITEINOUT,G11II NX,NY
            IFRNKGGTGLXIGGOTO
    45 URITEINOUTY,7,G
        GO TO 250
CALL' SETTUNTOTO
PEAO CONSTANTS OF HEIGHT FUNCTITON AND OF F,
    SET UP VECTOR F(KIEFHAT+BETA*(Y(K)-D/Z\ FDR K=1,\ldots..,NY,
    COMOUTE INITIAL VALUES OF MEIGHT AND OF OMEGA II.E. H AND U,V,PHIJ
    FOR EACHMPOINT DF THE GRID,
    {U : YHERE UE-{G/FIOION/DY{
```



```
    * (X,Y,TIME) = W(X+FL,Y,TIME)
    V(X;O;TIME)=V(X,D,TIME)=0.
```



```
|
    CALL SEEUPIU,V,PHINH,F,NX,NY,AK,BK,LX,LYI
    PRINTTEOUT INITIAL,NVALUES OF U, V, H, ENERGY, MEAN HEIGHT, ELAADSEO
    TIME AND HEIGHT CONTOURS.
    WRITE(NOUT:B)
    CALL UVOUTiU,NX,NY,LXI
    writeinout,gi
    CALL UVOUTIV,NX,NY,LXI
    TME=O.
        SCALE VAPIABLES
    OO 55 J=1,NY
    S3 I=1 NXAC/UFAC
    OS IEI;NX
    VII;J|=VII:J\/UFAC
    OHIII,JI=DHIII,JI/UFAC
    35 HII,J) =H(I,J)/HFAC
    G=G:HFACMAFAC**2
    OX=DX/HFAC
    OY=DY/MFA
    OT=DT*UFAC/HFAC
    ADJ=ADJ*MFAC/UFAC*:3
    Y=0T介{4:*OY
    FT=0.5*DT
    CALL LOOKIU,Y,PHI,H.NX,NY,LX,F,LY,HO,ZO,EO)
    CALL MOUT(H;NX,NY,(X)
    CALL MAPPA(H:2.EOB,NX,NY,LX)
    RITEINOUT,IOI HO,ZO,EO
    IFIIPR.EO.OJITPR=1
    POJEEPSDTIDOXTO
        DJEEPSOTMiDYEDY
    SOLVEFOR VALUES OF U. V, PHI FOR EAGH SUCCESSIVE TIME STEP
    CALL QUSTAFIPHI,UH,VH,OHIH,AK,BK,CK,DK,EK,AJ,BJ,GJ,P,Q,R,
    IX,Y,Z,GG,S,E,AL,BL,CL,DL,EL,AM,GM,CM,NT,M,NINT;
    ENO
    THISGROUTINE LUDCOMIP,O,ROA,B,C,ODE,NY,NNINDS COMPOSITIONNFOR EITHER
    A OLOCK=TRIDIAGONAL OR CYCLIC GLOCK-TRIDIAOONAL MATRIX.
    GIVEN A BLOCK (2*ZI TRIDIAGONAL mATRIX UITH SUB-DIAGONAL, DIAGONAL,
```



```
        AND SUPERGDIAGONAL ELEEMENTS IN, ARRAYS PGOQ, R',
        L HAS SUB-DIAGONAL ELEEMENTSINNARRAY O,
            AND DIIAGONAL ELEMENTS IN ARAAY A, ANO
            U HAS SUPERGDIAGONAL ELEMENTS IN ARGAY C,
            ANO ALL DIAGONAL MATRICES ARE IDENTITY'MATRICES.
    IF THE GIVEN MATRIX IS NOYCYCLIC, SETXIND=OM THIS CASE
            L HAS ELEMENTS OF BLOCKSI TO INM-2) OF THELASTTBLOCK-ROWIN
            U HAS ELEMENTS OF BLOCKS 1 TO (NM-2) OF THE LAST BLOCK-COLUMN IN
            U HASGELEMENTS OF BLOCKS ITO INM-
    THE OROER OF TH
    P(I)=B(I) FOR I=2 TO N-1
    P(N)EB(N)+E(N-Z)OC(N-2)
    P(I)EAII)PC(I)FOR I=1 TO N-2
    l
    O(1)EA(1)*C(I-1)+AII) FOR I=2 TO N-1
    Q(N)=SUM(E(1)=D(1)+\ldots..+E(N-2)OD(N-2I)+B(N)*C(N-1)+A(N)
    E{I\C{II+EII+I)=O&FORI=1 TO N-2
            OIMENSION PI4,NYI,O(4,NY),R(4,NY),A(4,NYI,B(4,NYI,C(4,NY),D{4,NYI,
            1 El4,NY!
            NM=N-2
            OO S0 I=1;NGO TO 20
            FIIGGT1, GO TO 20
    4
        \1,11=012.1
    60T0}3
    20 IM=IT-1= = (I)
        O 25 L=1,4
    25
        F(!T)=P!L,I
            IF(INDEN)GOTO2O
            R(N):EO(NI-E(N-2)OC(N-2)
            DO27 L=1,4
```



```
    20*(1,II=0(1,II-8(1,I)*C(1,IM)-R(3,I):C(2,IM)
            A(2,I)=O(2,I)-B(2,I)*C(1,IN)=8(4,I)*C(2,IN)
            A(4,II#O(4,II-812,IICCI3,IM)-RI4,II*C(4,IM
            IFII:EO.N1 GO TO 50
```



```
            *N!
```



```
            *)
    1 DETT=1.NDETI
            T1#=R(1, I)
            T2=R(2,1)
            T3=R13,1
            IFYI-LTANN1 GOTOM3
            T=T1-8(1,I)*O(1,1m)-B(3,1)*O(2,IM
            T2=T2-g(2,I)*D(I,IM)-B(4,IIOD(2,IM)
            T3=T3-A(1,II:D(3,1M)-913,1100(4,1M
    T4=4-a(2,1)00(3,1m)-&,
    3 C{1,I)= (AACAT1:T1-AA3,1):T2):DEET
            (13,I)=1A14,I!*T3-A!3,I)
            C(4,T)=-1A12;B10T3-A,1,T,:TAl*OET
            FITNDEO O!GOTO SO
            IFIINOGED;'GGONOTO
            S1=00:
            S S = 䘖,
```

 E{1才=R(N)
 3
 E(L,I)=|{L,N)
 T1==P(1,I)
 T2=-P!2,I
 T4=0-0i4;I
 T4*-0i4,
 GOE(I) E-E(I-1)*C(I-1)
    ```


```

 IFIIEEO.NMI GO TO }6
 T{=M{I,I)*D{1,IM{*B(3,I)OD(2,IM
 T2=0(2,I)&DII,IMI*8(A,IIODI2,IM
    ```








```

 00T0 60
 IF(IND.EQ.O) OD TO BO
 A(N)=O(N)-B(N)*C{N-1)- SUM(E(I)*D(I),I#1,(N-2))
 A{1,I|xA{1,I}-$1
 A(2,I)=A(2,I)=S2
 AIA,II=A(4,I)=S*
 O CONTINUE
 RETURN
 ENO
 SUAPOUTINE GUSTAFIPHI,UH, VH, PHIH,AK,BK,CK,OK,EK,AJ,BJ,CJ,
 I P,O,R,X,Y,Z,G,S,EEAL, FL,CC,DL,EL,AM, RM,CM,NT,M,NINTI
 STAFSSON 119711
 OUASI-NEGTON NONLINFAR ADI ALGORITHM TO SOLVE THE NONLINEAR SHALLITW
 #ATER EOUATIDNS.
 IN ITS SECOND PART IT IMPLEMENTS THF AUGMENTEO LAGRANGIMN METMOD FOR
 POSTERIORI' CONSERVATION OF THE SHALLOV UATER INTEGRAL INVARIANTS.
 COMNON/OLDIXOISHOI,HO,2O,FO.ALPHA,AETA,TG,FIT2:,NX,NY,LX,LY,PNLTH
 1,PNLTZ,PNLTE,UUH,UZ,UE
 COMMONICONSTIFL,D,T:OX,DY,DT,FX,FY,FT,GG,TIME,IPR,ADJ,ODJ,IND
 COMNON/RITE/NIN:NOUT,NTAPE
    ```

```

 1 PHTHI15,12!,H(15,12:,ANIA,15,12I,BKI4,15,12I,CKIG,15,121,
    ```



```

 OIMENSION GCSSAOI,YSi\32GOI.
    ```

```

 EXTERNAL FUNCT
    ```

```

 NNENM*NY*S
 ALPHA=1.
 TGYGGGG/G
 C RELATIVE ERROR BOUNDS FOR ACTIVATING THE AUGMENTED LAGRANGIAN ALGORITHM,
EPSH=HO\#5.E-3
EPSZ=2O*1,E-3
EPSE=EOQSIEESTMARAMETERS
RHOFO,O INOICATES THAT TOTAL MASS UILL NOT BE USED AS A CONSTRAINT.
RHO=O.0
QEO=0.5
REO=O:5
OO100 K=1,NY
FF(K):FIKIEFT
ADJ=|ADJ
00J=-80J
FX2=0.3*FX
NYMENY-1
KD=M
IOPT=0
HC\11=1.
zC(1)=1.
TCili=0.
IT1=1
MOO38O IEI,NT
IFIKO:NE:MI GD TO 15O
OO 115 K=1,NY
OO11O J=1,NX
JPI=J+1
IF{JPI,GT.NX)JPIEI

```

```

 OJE{PHI(JPI,N)=PNI(JNI,N);OFX
 O(1,J)=1*+UJ
 0iz,Jj=pj
 0(3.J)=0.5@PJ
 O(4,J)=I**O&50uJ
 R(&,J)=Qiq,J)
    ```

```

 R{2,JI=FXZ-RHI(J,K)
 R(3;J) #R(2,J)
 05 PIL,JJ=-RIL.J)
 110 CONTINUE
    ```

```

 1 EK(1,i,K\,LX,NX,I;
 115 CONTINUE
 C OATAINNUH, PHIH. KY
 UMIJ,K,N#GINK
 152 PHIHIJ.KIEPHIIJ.KI
 DO 13S L=1,NIN
 OO IOS KII:NY
 FKTEFF(K)
 FU#FV
 KP1 # K+1
 IFIKPI-LE.NY) GO TO 155
 KPI=NV
 GO TO 1EO
    ```
```

155 IFINM1.GE.1) GO TO 155
KM1=1
150
65 FP=0.50FO
DO 1>0 J=1,NX
JP1=J =1 1
IF(JP1.GT.NX) JPI=1
IF(JM1.LT.1) JM1=NX
S(1,J)\geqU (J,K)-V(J,K):(FU*(U (J,KP1)-U (J,KM1)I-FKT)
SI2,J!=PMI (J,KIOII.-FP*iV IJ,KP1)-V,J,KM1\I!
1-FUOV IJ,KIEIPHI IJ,KP1I-PHI IJ,KMIJI

```


```

 1 IPHIHIJP1,NI-PHIH(JM1,KII-S\2,Ji
 If(AOJ.EO.O.) GO TO 170
 IF(K.EQ.1.OR.K.EQ.NY) GO TO1>0
 S(1,j) =S(i,Jj+ADJ:(U(J,KP1)-2,*U(J,K)+U(J,KM1)
 S(2,J)=5{2,J1+ADJ*(PHI(J,KP1)-2,*PNI(J,KI+PNI\J,KM1)
 70 CONTINUE
 CALL BAKALKK(AKI1,1,K),RK(1,1,K),CK(1,1,K),OK(1,1,K),EK(1,1,K),
 1 S.E.LX.NX,1)
 DO 100, J=1,NX
 UH!J;K)=UH1J;K)-E(1,J)
 280 PHIM(J,K)=PHIH{J,K)-E(2,J)
 85 CONTINUE
 195 CONTINUE
 c OGTAINTVNE
IFIKO:NE=M)GN TO 215
00 210 K=2,NYM
OO 205 J=1,NX
Y(J)=1.
z(J)=Fx=Un(J,k)
205 x{J)=-2\J)
CALL LUTRID(X,Y,Z,ALII,K),BL(I,K),CLII,K),OLII,KK,ELII,KI,LX,NX,1)
210
CONTINUE
OO22O K=1.NY
OO
DO 265 L=1,NINT
DOK25% L=1,NINT
FKTEFF(K)
FU*FY
KP1=K+1
KM1=K-1
230 FP=0.5*FU
OO 235 J=1,NX
MM1=J-1
IFIJPI.GT.NX) JPI=
1F(JM1.LT,1) JM1=NK
z(J)=V {,K*(\&.-FU*(V IJ,KP1)-V (J.KM1)II-PHI (J,K)*FP*
1, (PHI (J,KPII,-PHI IJ,KMMII
z(J)=VHIJ,K)+UHIJ,KI:ZFX*IVHIJP1,KI-VHIJMI,KII+FKTI-ZIJ)
IFIADJ.EO.OO! GOTO23S
z(J)=2(J)*AOJ*(VIJ.KP1)-2.*VIJ.ki+V(J,km1)!
CALL GAKTRIIAL(1,K),BLII,K),CLII,KI,DL(1,K),EL(1,K),Z,G,LX,NX,1)
DO245 J=1,NX
245 VH(J,K)=VHIJ,K)-G(J)
250 CONTINIS
CONTINUE _NI,NK
VH(J,1)*0.
265 VHIJ,NYI=O.
ORTAIN'N. PHI'FOR NEXT STEP.
IF(ND:NE.N) GO TOXZS
OO145 J\#1,NK
FU=FY
KP\{=k+1
KM1=k-1
IFIKP1-LE.NYI GO TO 120
KPI=NY
60 in 125
120 IFGKMI:GE.1) GO TO 130
Km1=1
12% FU:FU->FU
O FP=0.50FU
VK×{VH(J.KP1)-VHIJ,KM1)!*FU
PK={PHIHIJ,KPIIMPHIN{J,KMIII*FU
O(1,k)=1.+Vk
O(2,k)=PK
O(3,K)=0.5*PK
014,k)=1.+0.5*Vk
R(1,K)=FU|VH(J,K)
R(4,K)=R(1,k)
R(2,K)=FP=PHIHH(J,K)
RN3,K)=0I2,k,
135 P(L,K)=-R(í,K)
IF(K.EO-1) GOTO 136
IF(K.NE.NY) GO TO 140
136
(1, K,K)=1.
013;K)=0.
R (1,k)=0.
P(1,k)=0.
R(3,k)=0.
Q(3OK\=O
CALL LUDCOM(P,Q,R,AJII,I,J),BJ{1,1,JJ,CJ(1,1,JI,X,Y,NY,NY,O)
145 CONLTINUE
26s OO 270 K=1,NY
VIJ,Ki=VHIJ,ki
270 PHI\J,KY=PHIN(J,
DO 300'LEI,NINT
DO290,j=1,NX
JP1=J*1
IF{JJP1.GT.NX) JPI=1
IF(JM1:GT:NX) JPPI=1
DO 200 KE1,NY
FKT=FF(K)
FU\#FY
KP1\&K\&1
KMI=K-1
MFIKP1.LE.NYIGO TO 272
IF(KM1.GE.1) GO TO 275
KM1=1
274
FU=FU+FU

```
```

275 FP=0.50FU
S (1, K)=VH{J,K)-UH{J,K)* (IVH{JP1,K)-VM{JM1,K)!)*FU*FKT

```

```

 1 (PHIHIJPI,KI-PHIM(JM1,K))
 FU(VIJ,KPI)-VIJ,KM1111-511,K
 1_FPPPHI|J,K*(PHI{J,KPI)-PHI|J,KMI)!
 S{2,K)=PMI(J,K)*(2., +FP*(V(J,KPI)-VIJ,KMIIII*FU*V(J,K)*
 2IPHI(J,KPI)-PHIIJ,KMIII-SI2,K
    ```

```

 S{2,KI#S(2,K)+ROJ* (PHIH{JP1,K)-2.*PHIH{J,KI+PHIHIJM1,K)!
 280
CONTINUE
S(1.1)=0.
S11,NY1=0.

```

```

 OO2OS K=1.NY
 PHI{J,K}=PHI{J,K)=E{(2,K)
 viJ.1!=0.
 Y(J,NYI=0.
 290 CONTINUE
 300 CONTINUE
C DBTAIN U FOR NEXT STEP
TFIKO.NE:WNNO TO 315
OO 310 J=I,NX
r(K)=1.
Z(K)=FY*V, (J.K)
CALL LUTRID(X,Y,Z,AMII,JI,BM{1,J),CMII,JI,P,O,NY,NY,OO
30 CONTINUE
315 DO 316 K=1,NY
DO 315 JE1;NX
316 U(J,K)=UH(J,K)
OO 345 LEI.NINT
OO 35 J=1,N
JPI=J+1
IF(JP1.GT.NX)JPI=I
IFIJM1.LT.1|JMI=NX
OO 325 K=1,NY
FU=F%
FKT=FFIKI
KP1EKK1
KMIEK-1
IFIKPI.LE,NYI GO TO 31B
KPI=NY
GOTO 32O
KMI=1
O FUEFU+FU
322 FP=0.5%FU
Z{K!EUH{J,KI*II,FFX*(UHIJPI,KI-UHIJMI,KIII-FK2*PHIH{J,KI*
1 {PHIH(JPI,K)=PHIN{JMI,K);

```

```

 IFIBOJ,EO&O, GOGTO 325
    ```

```

 CALL BAKTRIIAMII,J
    ```

```

 330 UIJ%NME
 345 CONTINUE
 TIME=TIME + DT
 IGRF=0
 4OB CALL LOOKIU,V,PHI,H,NX,NY,LX,F,LY,HT,ZT,ETI
 MDFBABSIHT-HO
 ZDF=ABSIZT-ZO
 EOF=ABSIET-EO)
 URITE(NOUT,4015) SECP
    ```

```

C TEST WHETHER TO ADJUST THE H-FIELD.
C SO AS TO COROECTTHETTOTAL MASS.
IFIHOF.LT.EPSHI GOTO 4O2
OO GOG K=1,NY
DO 40G J=1,NX
HIJ,KIEMIJ,NI+HO-NT
406 PHIIJ,KIEZ:ESORTYGO*H{J,KII
C TESTO UHETHER TO ADJUST ALL THE FIELDS,

```

```

C SOIAS TO IAT LEASTTPARTIALLYY'CORRE
GOINNTEGRAL,INYARIANTS CONSERVATIION. CO TO 4II

```

```

 *5/23HERRORS , H*Z LEE:,3EI4.8i
 C SET UP AN AVGMENTEO LAGRANGIAN VITH MULTIPLIERS UUH, UZ, ANO UF, ANO
C PENALTIES PNLTH. PNLTZ, AND PNLTE.
ETA=100.
ACC=ETA*SORT(ZDF**2 +EDF**2I
ACMINEACC/IO.
RH=RHO
QE=REO
UUHIO.
UZ=0.
UE=0.
PNLTH=0
PNLTZ=0.5/QZ
C TME FOLLOUINGSECTION IUP TO 'GO TO OOS'I FORMSNALOOPP, IN UHICH
C THEIMSL LIAPARY SUGROUTINE ZXCGR IS CALLEDTO MINIMIZEE THE AUGMENTED
LAGAAGIANTTO AN ACCURACY OEPENDENT ON ETA. THEREAFTER THE MULTIPLIIERS.
GENALTIES, AND ETA ARE UAOATED, UNTILLTHE CONSTRAINTSAARESATISFIEDGTO
GENALTIES, ANDEETA ARE URDATED, UNTILLTHE CONSTRAINTSAARESSAT
TXCGR CALLS FUNCT TO EVALUATE THE FUNCTION VALUE AND GRADIENT VECTOR.
ALTERNATIVELY TMF NAG LIARARY SURROUTINE EOGDAF, UHICM ALSO USES THE
CONJUGATE GRADIENT METMODGTO MINIMIZETTHE FUNCTION, ANO ALSO REOUIRES

```



```

 THE CALLINGGSEOUENCE YOULO BEI
 CALL EOLDAFINN,XCGFEST,GC,XTOL,VSYFUNCT,MONIT, 1OO, IFAILI'
    ```

```

 403 OO 4OL II#I,NNNELY TO PRINT THE PARAMETERS, IF SO DESIAED.
 404 XOIII)=xC(II)
 O4 URITEINOUT,GOS) ETA,RH,RZ,RE,UUH,UZ,UE,PNLTM,PNLTZ,PNLTE
    ```

```

 FOEPNLTZ*ZDF**2+PNLTEPEOF**2
 CALL ZXCGRIFUNCT,NN,ACC,1OO,FO,XC,GC,FEST,WS,IFAILI
 FORMETNOUT,39GI IFAIL
 399 FORMATIAN IFAIL =, I5)
 DO 407 K=1,NY
 OHI(J,K)=2,*SORTIGG*H(J.K)
 CALL LDOKIU,V,PHI,H,NX,NY,LX,F,LY,HT,ZT,ETI
 HDIFFHT-HO
 ZDIF=2T-20
 EDIF=ET-EO
 RITEINGUT,4OOI TIME,HT,ZT,ET,HDIF,ZOIF,EOIF
 F(4OS(4.02DIF).GT.ZDF),RZ#RZ:O.4
 UZ=UZ+ZDIFIRZ
 IFIAESIG*EEDIFI,GT.EDFI REIRE*O.4
 UETUE*EDIF/RE
 PNLTE=0.5/QE
 410
HDFIAMSIHOIF
ZOF=ABSIZOIFI
EDFZAASIEDIFI
ETAEETA*O*:
IFCETAMLTGAOMIGGOTOGYI2
ACMIN=ACC/10.
G0TO403
412 MRITEINOUT,4105!
IOS FORMATIZEN'SIITERATIONS INSUFFICIENTI
411 CONTINUE
IFIIOPT,GE,IPRI GOTO S50
IFIIGLYGNTYGGOTOG355
FORMATIISHOSCALEDTE
413 FORMATIISHOSCALED TIME = F12.0)
CALLLHOUTIM,NX,NY,LXI
CALL MAPPA(H,2,EO3,NX,NY,LX)
355 IFIIGRF,EO.OOGGO TO 356
ITIEIT1+1
HC(IT1)=HT/HO
zC(ITI)=2TMZO
ECCIYIIEETMEO
TCIITIIETIMES36* GO TO 4OI
OO 409 K=1,NY
HIJ,KI=H{J:KI+HO-HT
409 PHI(J,K)=2.*SORT(GG*H(J,K))
CALL LOOKIU,V,PHI,H,NX,NY,LX,F,LY,HT,ZT,ETY
MOIF=HT-HO
ZDIF=ZT-ZO
EOIFEET-EO
WRITEINOUT,4OO, TIME,HT,ZT,ET,HDIF,ZOIF,EDIF
401 CONTINUE
G MFIKD,FO,M, KD=0
GO MO=KO\&1

```


```

 RETTURN
    ```


```

 WMERE P P = GUCIO/2-YI/(2, OO),
 PHI(J,K)=2,0SORT(GOH(J,K)!
 U(J,K)=-{G/FIK)\O(PARTIAL DERIVATIVE DH/OY AT J,K)
 COMMON/CONST/FL,D,T,DX,OY,DT,FX,FY,FT,G,TIME,IPR,ADJ,BDJ,IND
 COMMON/RITE/NIN,NOUT,NTAPE
 OIMENSION UILX,LYI,VILX,LYI,PNIILX,LYI,FILYI,SILXI,CILXI,H(LX,LY)
 DATA TUPI/6.2031053071795%
 FORMAT(6EIO.4)
 3 FORMAT(25HI SHALLOW YATEQ EOUATIONS/I
 FORMATIITHO CONSTANTS: HOE,FS.O,2HM, IOX,5HFHATX,EG.2,GH/SEC
 1 1OX, 2HLE,Fg,O,2HMZ,12X, 3HOXE,FB,O,2HMM/14X,3HH1K;F5,OO,2HM,MOX,
    ```


```

 READININ,I', HO,H1,H2,FHAT, BETA
 WRITEINOUT,B) HOITEINOUT, 4I HO,FHAT,FL,OX,H1, OETA,D,OY,H2,T,DT
 YE=9.10
 YF=0:5:YE
 D2=D'2%/
 MFYTUNI/FL/
 * FJ=0.
 OO 10 J=1,NX
 FJ=FJ+1.
 TEMO=FJOFNXI
 SIJ\=SINITEMPI
 10 CIJ)=COSTTEMPI
 S|NXI=0.
 NYMENY-1
 FNYMI=9./FLOATINYMI
 FKM=0.
 r=0.
 OO2OK=1,NY
 TEMP=O2-Y
 F(K)=FHAT-BETAOTEMP
 GH=G/F(K)
 YA=4.5-FKM:FNYMI
 YBEOCFEYA
 TNMETANMIYBI
 TH2=1:-TNH*TNH
 C4=-YF*SH2*H1
 TNH=TANHIYAI
 SN2EI:OTNHOTNH
 C3=C2*XF
 C5=2,C2*YF*TNM
 C5=2;C2*VF*
 OOMSNJ=1.N
 M,
    ```
```

 14 viJ,K!=GH*C3*C\J!
 U(J,K)==GH*IC4+CG*TEMO\
 CONTTNUE
 CONTYN
 20 FKM=FKM*1.
 v(J,1)=0.
 V(J,NV)=0.
 RETURN
 ENO
 ENO
 C
THIS SUSROUTINE PROVIDES VISUIL OISOLAY OF THE FIELD AY PRINTING AN
ISOLINE CONTOUR OF THE FIELD. USING OIGITS FROMO TO, .
THE PARAWETER FUNGIVES THE FIELOTTOGBE CONTOURED:NHILEE C IS A
OTMENSTON FUNITHE INVERSE OF, SH

```

```

 /1,NUM(3)/1H3/,NUM(4)/1H4/,NUM(5)/1H5/
    ```

```

 1 FORNATI//5X,2315/1
 2 FORMATIIH,I3I
 3 FORMAT{1HH,7X,116A1)
 M=3
 FKEK
 FN=N
 I % O
 NY=NZ-1
 LENO=K
 YRITE(NOUT,1) IJ,J=1,NZ)
 JB=1
 1 0
 #RITEINOUT.2) I
 IPI=1+1
 IFIIPIOGT,NKI
 GY!NN1 IP1EI
 MOIFSIFUNINPI,JI-FUNII,NII/FK
 JX=1+N*(J=J景)
 ANSII,JXIEFUNII,J)
 DO IS LE2,LEND
 15 ANS(L.JXI=ANSIL-I,JX)+XDIF
 JX=1+N&ZI*NY
 DO 20 LEI,LEND
 JXPNEJX->N
 YOTF={ANS(L,JXPNI-ANS(L,JXII/FN
 m=Jx+1
 M3=Jx+N-2
    ```

```

 MEND=M3
 DO 50 LIEI.LEND
    ```

```

 IFIANSIL,MM.GE.O.J OO TO 30
 AANSIZ-ANSIL.MI
 MNS=CAAANS
 KKANS:ZO(KANSIZI)
 KANS=MODIKANS,IOI
 IFIKANS.EOOOIKANS=10
 IANSIMIENUMIKANS:
 GO TO 40
 30 KANSFCOANS(L,M)
 IFIKANS.EO.KKANS) GO TO 25
 3 IANSIMIEBLNK
 40 CONTINUE
 IFIL,GT&I\GGOTOGS5,M),MEI,MENDS
 GO TO 50
 45 WRITEINOUT, 3) IIANSIMI,MzI,MENDI
 O CONTINUE
 5 LEND=1 10,55.6
 LENDII
 IERITF\NOUT,Z)I
 DO 6O J=1,NZ
 Jx=1+N*(J-J|!
 60
GOTOSIO
S URITEINOUT,II IJ,J=1,NZI
DETURN
FND
SUgRIUTINE UVOUTI*,NX,NY,LXI
C THIS SUMDOUTINE PRINTS OUT THE VALUES DF THE VELOCITY FIELD COMPONENTS
C IN MATRIX FORM, STANDS FOR EITHER U OR V COMPONENTS OF THE VELOCITY FIELD.
STANDS FOR EITHERYY
COMMON/RITE/NIN,NOUT,NTAPE
OATALINO%O%
IFOOMAY(3HO , 22I5/11
JE=0
5
JE=NINOINX,NE+22)
JE=NINO{NX, JE\&22), J,J=JB,JEI
KK=NY KEINY
OO 1O K=1,NY
WRITEINOUT,ZI KM,IWIJ,KK!,J=JB,JEI
10
KRIFEM
IFIJE,LT.NXI GO TOS
RETURN
ENO
SUBROUTINE HOUTIH,NX,NY,LXI
C THIS SUROOUTINE PRINTS OUT'THE HEIGHT FIELO VALUES IN NATRIK FORMAT.
DIMENSION HILXINYI
COMMON/RITEININ,NOUT,NTAPE
DATA INDIO, HEIGHT YALUES,
6 FORMATIISHO HEIG

```

```

 JE=O
 JB=JE +1
 JEFMINOINY, JE+ISI
 #RITE(NOUT,E), (NOUT, J.J=JB,JE)
 KKENY'NEI,NY
 0010
 甘RITEINOUT,GIKM,IHIJ.KKI, J#JB,JEI
    ```
```

1 0
MKKKM
RETURN
FND
SUAROUTINE LODK\U,V,PHI,H,NX,NY,LX,F,LY,HMEAN,ZMEAN,ENERGY
THIS SUBROUTINE CALCULATESSTHE TOTAL ENERGY, TOTAL MASS ANO POTENTIAL
ENSTROPHY, YHICH AREEINTEGRAL,INVARIANTS OFGTME SHALLOY VATERGEQUATIIONS,
COMMON/CDNST/FL,D,T,DX,DY,DT,FX,FY,FT,G,TIME,IPR,ADJ,BDJ,IND
OIMENSION FILY)
IIMFNSION UILK_LYH,VILX,LYI,PHIILK,LYI,HILX,LYI
CDMMON/RITEININ,NOUT.NTAPE
DATA JNDIO/,NSTERIOI
IFIJND.GT:OI GO TO 5
GPEA=NXO(NY-1,
AREAZNXOINY=1I
ECNSTEDXGOY/(G+G)
SUMENO=O.
HMEAN=0.
OO 4O K=1,NY
IFIK.EO.NYI FAC=O.S
HELEO.
ENEREL=0
DO 1O JEI,NX
ENEREL=PHSO\&{PHSO\&U(J.K):U(J,KI\&V{J,KI*V{J,K)I +ENEREL
O CONTINUE
IF(JND.GT.O) GO TO 20
OO 15 JEM;NX
5 HELEHELTH(J,K)
OO TO 3O
HIJ,K)=PHI(J,K)*PHI(J,K)*GGINY
5 HELEHEL+H(J,K)
HFIFAC,EO:I-1GO TO 3S
HMLENELGFAC
SUMENGOSUMENG +E NEREL
O FACE1.0
HMESNEMMEAN/AREA
ENERGYESUMENG*ECNST
NYI=NY-1
E2\#OXODY*O.S
ZMEAN\#O.
DO60 K:2,NY1
ENSEO.
J=1,NX
JMI=J=1
IFIJ.EQ.1: JMIENX
IFIJ.EQ.NXI JPI=1
VX={V{JPI,K\=V(JMI,K):/{2.*DXI
UY=(U{J,K+1)-U(J,K-2i)/(2.*OX)
A=VX-UY+F{(K)
5% ENSIENS+A*A/HCTJ.KI
SO ZMEANEZMEANHENS
ANEZMEAN*EZ
NSTEPEIPR .ON GO TO 4S
JND=1
GO TO 50
45 CONTINUE
50 RETURN
END
SUBROUTINE LUTRIOIP,O,R,A,B,C,D,E,L,GN,INDI
SIMILAR TO SUBROUTINE LUOCOM IO, W, UHICH IS THE 2*2 BLOCK CASE.
HERE THE L-U DECOMPOSITION OF A TRIOIAGONAL MATRIMKIS PERFORMEO.
ARRAY P CONTAINS SUBTDIAGONAL LELMENTS.

```

```

 N IS THE OROER OF THE MATRIX.
 IF THE MATRIXIIS CYCLICSETINOEI. OTHERWISE SET IND=O.
 ON RETURN TO THE CALLING PROGRAM
 IN THE LONATRIX THE DIAGONAL ELEMENTS ARE IN ARRAY A,
 AND IF INDEI THE SUS-DIAGONAL ELEENNTS ARE INNARRAY B,
    ```

```

 ANO IF INDEI THE FIRST N-2 ELEMENTS OF COLUMN N AREIINGIRRAY D.
 DIMENSION PILI,OILI,R{LI,AILI,NILI,CILI,DILI,EILI
 NM=N-1
 DO 60 I=1,N
 IFII.GT.İGOTO 20
 GO1)=011%
 -6ITO:30
 IFII.LFONI GOTO 2O
 IFIINOEEO.OI GOTOL
 1m=I=1
 A(I)=O\I|-B{I!*C(IM)
 IF(I=NM) 30,29.55
 2 IFIIND,EQ.DIGGO TO 3O
 CII=(RII!-A(IIODIIMII/AII
 GOTOTO
 30 CII!ERIII/AII
 IFIINO,FO;OI GO YO SO
 IFII.GT.1) GO TO 40
 51%0.
 T{=P(1)
 GO TO 45
 OE{I|:=E|IM|*C(IM)
 IFII.FO,NMJ GO TO 60
 TA=-BIII*OIIM!
 6 DIII=TI/AIII
 SIESI+EIXIODIII
 GOTO60
 5 IFIIND.EO.O1 6O TO 60
 A(N1ZAINI-SI
 CONTINU
 END
 SUBROUTINE BAKALKIA,B,C,O,EES,X,L,N,INDI
    ```


```

 ORIGINAL MATRIXIS CYCLIC.
 IN THE L-MATRIX THE OIAGONAL ELEMENTS APE IN ARRAYYA,
    ```

```

IN THE U-MATRIX THE DIAGONAL ELEMENTS ARE ALL EOUAL TO IA INOT STOPEDI

```

```

 DIMENSION A(4,LI,B(4,L),CI4,LI,DI4,LI,EE(4,L),SI2,LI,XI2,L)
 NM*N-1
 NM2IND,EO.O1 GO TO 10
 EI=0.
 E1=0.
 10
    ```

```

 IFII.GT.I\GOTOM 15
 T1=5(1, 1)
 T2=5:2,1)
 GO TO 20
 15
    ```

```

 TZ\piS(2;I)-BI2,II*XII,IMI-B(4,II*XI2,IM
 IF{INO.LE.O) GO TO 20
 T1=T1-E1
 X{1,I)##(A{4,I):TI-A(3,II*TZ)*TEMP
    ```

```

 IFIIGGE:NM) GOTTOMO
    ```

```

 E2=E2+E{2,I)*x{1,1)+E{4,1)=x(2,I|
 IFIINDELE.O) GO TO 40
 T1=X(1,N)
 OO 35 I=1,NN2
 X{1,I)=X{1,I}-D{1,1)*T1-0{3,I)*T2
 35 x(2,I)=X{2,I)=D(2,II*TI-D(4,I)*T2
 K=N
 KP=K
 x(1,k)=x(1,K)-C(1,K)*x(1, KP)-C(3,K)*x(2,KP
    ```

```

 RETURN
 SUBROUTINE BAKTGIIA,B,C,D,E,S,X,L,N,INO
 TOFIND X HERE LEY=S AND UOXEY UHFRE
 L AND U WFRE FORMED BY L-U DECOMPOSITION OF A TRIOIAGONAL MATRIX
 OF OROER N: IND-I INOICATES THE ORIGINAL MATRIXIISCYCLIC
    ```


```

 IF INDEI THE ELEMENTS I=I TO IIN-2 OF THE N-TH OOW OF MATRIXLL
 CGNTAINS THE SUPERTDIAGONAL ELEMENTS OF MATRIXU.
 THE DIAGONAL ELEMENTS OF MATRIX U ARE ALLA EOUAL TO 1
 IF INNOI THE ELEMENTS I=I TO I=N=2 OF THE M-TH COLUMN OF MATOIKL
 DIMRENSIONARRAY DGILI, EILI,CILI,DILI,EILI,SILI, XIL,
 IENO=N
 IFIIND.GT&O) IENDEIEND-IM IYS STORED IN ARRAY
 A(I)+x(I-1)+A(IIOXIII=SII
 0010 I=2.IENO
 IM=I-1
 xIIE(S{II-BIIJ*XIIM!/IA(I)
 IF IND=1, SUMIE{IIOXII),I=1 TO N-2)+B{N)*X(N-II*A(N)*X(N)=S(N)
 EX=O.
 0015 I=1.Nm
 15 FXX=EX+EIII;NX(I)
 X(N)={S(N)=OIN:由X{N-1)-EXIIAIN!
 (2) FINS X,WHERE U*XFY.
    ```

```

 OO25 I=1,NM
 xII)=X(I)=D(I)*XN
 OKN
 OO
 K=K-1
 x(K)=XIKI-C(K)*XIKP)
 QETURN
 END
 SUBROUTINE FUNCTIN,XC,FC,GC)
 THIS SUBROUTINE CALCULATES THE VALUE OF THE AUGMENTED LAGRANGIAN, FC
 ANDIITS DERIVATIVE INNRESPECYOFEEAHHNII,JY, UII,JJ, ANO VII,JI,
 GCIIJKI. WMERE IJK TAKES VALUES EETYEENNI ANO SONXENY.
 THIS ROUTINE IS USED FOR IMPLEMENTING THE MUGMENTED,LAGRANGIAN TECHNIOUE
 OF NONLINEARLY CONSTRAINED MINIMIZATION TO ENFORCE 'A POSTERIORI'
 CONSERVATION OF THE INTEGRAL INVARIANTS OF THE SHALLOW UATER EQUATIONS
 COMMON/OLD/XOISAOI,HO,ZO,EO,ALPHA,BETA,TG,FIIZI,NX,NY,GX,LY,PNLTH
 I,PNLTZ,PNLTE,UH,UZ,UEXK,OYS,DT,FX,FY,FT,G,TIME,IPR,ADJ,BDJ,IND
 DIMENSION XCI5401,GC15401,DZ15401,
 10HIS145.12),DH{180)
 M12EN/S
 M21=M12+1
 M22=M12+M12
 calCulate function valueff
 sumSQ=0.
 OOI II=1,M22
 SUMSOESUMSM22
    ```

```

 SUMSQ=SUMSO+BETA*IXCIIII-XOIIIII**2
 CALCULATE E,Z AND H
 IM=N22
 DO21 J=1.NY
 H=IM+I=1,N
 IHEIH+1
 MHIS{I,JH=2,#SORTIG*XCIIM\I
 HDIF=HT-HO
 EDIF=ET-EO
 CO
 FC=SUMSO+PNLTH*HDIF**24PNLTZ*ZDIF**2*PNLTE*EOIF**2
 * UH*HOIF+UZ*ZDIF&UE*EDIF
 UH*MOIF+UZ*ZDIF&UE EDIF
 TOXSSCULSATE
 TOYS=0YS年.
 MYS2=0YS/R.
    ```
\(C=(-0 \times 5\) - DYS \() / 2\).
NYM1 =NY-1
AREAE1, IFLOATINXQINY-1!
REA2EAREA/2.
IU=0
\(\begin{array}{lll}100 & J=1, N Y \\ 00 & 1=1, N X\end{array}\)
\(1 U=I U+1\)
IVEIUCMI2
IHIIU+M22
DZIIUI=0
Dz11vi=0
\(Z(I H) \neq 0\)
IFIJUFEAREAZ
FIJ.EO.I.OR.J.EO.NYI GO TO \&
IHMSEIHE1

IVNSEIVMS-
IUMP=IU-1+NX
IUMW=IU-1-NX
IUSPEIU\&NX
IUSM=IU-NX
IFIIANE:I) GOTOS
CYCLICX BOUNDS
HMSIMMS
SNX
IHMSIIHMS +NX
IVMSEIVMSHNX
IUMP =IUMP + NX
IUMMIIUMM + NX
5 IFII.EQ.2I IVNSEIVNS*NX
HPSEIN+I
IVDSEIV+I
YOS=IUPS + 1
IUPP \(=I U+I \neq N X X\)
IUPMEIU
IFPI.NE.NXI GO TO 6
IHPSETMPS-NX
IVPSEIVPS-NX
IVOS=IVOS-NX
IUPPEIUPP-NX
IUPN = IUPM-NX
6 IFIIEEQ:INX-1) IVOSEIVOS-NX
DZIIVIzilifxCiIVI-xCIIVNSIIfTOXS-IXCIIUMPI-xCIIUMMII/TOYS+FIJI

FIJIXCIIHPSII:OYSス
Zfintze
- OZUL \(=0\).

DZUR=0.
IFIJ.GE,NYM1) GOTOT
IVPP=IV+I+NX
IVMP=IV-1+NX
IFIT-EQ.I) IVMPEIVMP\&NX
IF (I,EO:NX) IVPP=IVPP-NX

IHSP = IN+NX
DZULEOXS2:I (XCIIVPPI-XCIIVMPIIfTDXS-IXCITUSOI-XCIIUIJITOYSt
IFIJ.LE.2) GO TO
7 IVPM:IV+I-NX
IVMNIIV-1-NX
IFII-EQ.II IVMM \(=1 V M M \rightarrow N X\)
IFIT.EOANXI IVPM=IVPM-NX
IUSNIIU-NX-N
O2UREDXS2年 (XC
D2URIOXS2* (IXCIIVPMI-XCIIYMM)I/TDXS-iXCIIUI-XCIIUSNII/TDYS*

3 CONTINUE
CALCULATE DF/DU
TALDHAEZ.AALDNA
TBETA =2, ©BETA
C2:DXS
\(C 3\)
\(C 1=2, ~ C 3\)


DO 1010
\(I M=I U+M 22\)
10 GCIIUI\#TALPHA* (XC(IU)-XOIIU)I+2.*2DIF*DZIIU)*DNLTZ*UZ*DZ(IU)
- +PNLTE*CI*XCIIU)*XCIIHI+C\&*XC(IU)*XC(IH)

CALCULATE DF/DV
0011 IVEM21, M22
IM=IV+MI2
1 GOMV+M12


CALCULATE DF/OH
IVEIU+MI?
IHEIU +M2 2



RETU
END
SUAOOUTINE MONITIN, YC,FC,GC,NCALEI

- PNLTZ.PNLTF,UN,UZ,UUE

IMENSION XCI54O1,GCISCOSE
SUMSOEO.
NXNYENXENY
GNOEM=O.
001 IUEI,NXNY
TVEIU+NKNY
IHEIV+NXNY

1 (XCIIHI-XO(IH):**2
GNORNFGNOQM+GC(IU)**2+GC(IV)**2+GCIIH)**2
GNOQM=SORTIGNORM
WRITE INOUT, 2 ) NCALL, SUMSO, GNORM
 ENO
11.45 .44. UCLD, \(50,042 . \quad 2.772 \mathrm{KLN} 5\).```


[^0]:    ${ }^{\dagger}$ Present Address: Supercomputer Computations Research Institute, The Florida State University, Tallahasse, Florida 32306, U.S.A.

